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Abstract

The development of a model to quantify semantic similarity and relatedness between words
has been the major focus of many studies in various fields, e.g. psychology, linguistics, and
natural language processing. Unlike the measures proposed by most previous research, this
article is aimed at estimating automatically the strength of associative words that can be
semantically related or not. We demonstrate that the performance of the model depends
not only on the combination of independently constructed word embeddings (namely, cor-
pus- and network-based embeddings) but also on the way these word vectors interact. The
research concludes that the weighted average of the cosine-similarity coefficients derived
from independent word embeddings in a double vector space tends to yield high corre-
lations with human judgements. Moreover, we demonstrate that evaluating word associa-
tions through a measure that relies on not only the rank ordering of word pairs but also the
strength of associations can reveal some findings that go unnoticed by traditional measures
such as Spearman’s and Pearson’s correlation coefficients.

Keywords Association measure - Neural network - Word embedding - Word2Vec - GloVe -
FastText

1 Introduction

Word associations have been a topic of intensive study in a variety of research fields, such
as psychology, linguistics, and natural language processing (NLP). In psychology, word
associations are closely related to free-association tasks (Van Rensbergen et al. 2015;
Giinther et al. 2016; Bhatia 2017; Rieth and Huber 2017; Dacey 2019; Gilligan and Rafal
2019), where word priming reflects a clear distinction between two types of information
inherent in word relationships: associative vs. non-associative, and semantic vs. non-
semantic (Harley 2014). Most studies of word priming have looked at pairs of words that
are both associatively and semantically related. However, participants can produce words
as associates of other words that are not related in meaning; for example, waiting can be
generated in response to hospital. Moreover, there can be semantically related words that
are not produced as associates; for example, dance and skate are related in meaning, but
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skate is rarely produced as an associate of dance. Therefore, words can be associatively
related, semantically related, or both of them.

In linguistics, it is widely agreed that two essential types of lexical relations (i.e. syn-
tagmatic and paradigmatic) are reflected in basic operations in the human brain (Higgin-
botham et al. 2015; Xiaosa and Wenyu 2016; Kang 2018; Playfoot et al. 2018; Ma and
Lee 2019; Reyes-Magaiia et al. 2019). On the one hand, syntagmatic relations take place
between words with a different part of speech (POS) that frequently co-occur in natural
language utterances. In this horizontal axis, we find the phenomena of collocations (e.g.
fine weather, torrential rain, or light drizzle) and idioms (e.g. bite the bullet, kick the
bucket, or pull someone’s leg). On the other hand, paradigmatic relations hold between
words that can replace each other in a given sentence without affecting its grammaticality
or acceptability. In this vertical axis, we find semantic relations such as synonymy (e.g.
die—perish, handsome—pretty, or truthful-honest), antonymy (e.g. buy—sell, dead—alive, or
hot—cold), hypernymy (e.g. adult-woman, mammal-horse, or vehicle—car), co-hyponymy
(e.g. woman—man, horse—dog, or car—truck) and meronymy (e.g. bird—wing, finger—hand,
or minute—hour). Therefore, both types of lexical relations can be considered to be word
associations.

Finally, NLP researchers prefer terms such as ‘“semantic similarity” and “semantic
relatedness” to refer to word associations (Banjade et al. 2015; Gross et al. 2016; Cat-
tle and Ma 2017; Garimella et al. 2017; El Mahdaouy et al. 2018; Du et al. 2019; Gruji¢
and Milovanovi¢ 2019). As stated by Budanitsky and Hirst (2001, p. 13 Budanitsky and
Hirst (2001)), “computational applications typically require relatedness rather than just
similarity”. Whereas semantic similarity is a lexical relation of meaning resemblance (e.g.
bank—trust company), semantic relatedness is a more general concept, which includes
not only similarity but also other lexical-semantic relations (e.g. antonymy, hypernymy,
and meronymy) and any kind of functional relationship or frequent association (e.g. pen-
cil-paper or penguin—-Antarctica). In this context, a variety of semantic similarity and
relatedness measures have been developed in NLP over the past three decades. Broadly
speaking, these measures have been traditionally devised from two different approaches.
On the one hand, the weak-knowledge approach is based on the co-occurrence infor-
mation of words in a corpus. For example, this approach is illustrated by the geometric
model, where words are represented as points within a multi-dimensional vector space and
semantic similarity is quantified as the spatial distance between two points (e.g. through
the cosine coefficient). On the other hand, the strong-knowledge approach is based on the
network model, which uses a semantic network—e.g. WordNet (Fellbaum 1998), to define
the concept of a given word in relation to other concepts in the network. Figure 1 serves to
summarize the terminology used in these research fields, where we employed “word asso-
ciation” as an umbrella term in this study.

The primary goal of this article is not to introduce a new measure of word associa-
tion but to devise a model (WALE) to measure the associative strength between words
by exploring different ways to integrate existing deep neural embeddings. The working
hypothesis is that the performance of the model depends not only on the combination of
multiple information sources but also on the way these sources are interlaced. In particu-
lar, we focus on Word2Vec (Mikolov et al. 2013a) GloVe (Pennington et al. 2014), and
FastText (Bojanowski et al. 2017), as they are the most adopted neural language models
in distributional semantics. Therefore, we are not concerned with looking into how the
hyperparameters of the neural network need to be efficiently tuned or with proposing a
new type of neural network to improve the accuracy of the model. This strategy could have
led us to conduct this research in an ad-hoc manner. Instead, our work is motivated by the
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word associations

associatively related words (P)

word similarity (NLP)

syntagmatically related words (L) paradigmatically related words (L)

semantically related words (P)
word relatedness (NLP)

Fig.1 Terminology on word associations in psychology (P), linguistics (L), and natural language process-
ing (NLP)

assumption that the reuse of general-purpose resources such as pre-trained word embed-
dings is a critical issue in language engineering, where the development of new compo-
nents requires considerable time and effort.

The main contributions of this article are as follows:

1. We devised a parametric model that can compute the association strength of two words
from the combination of word-embedding matrices, leading to the creation of a single or
double vector-space model. Indeed, after extensively experimenting with the integration
of embeddings constructed from text corpora (i.e. external language model) with those
constructed from a semantic network (i.e. internal language model), we demonstrate
that the weighted average of the cosine-similarity coefficients derived from independent
corpus- and network-based embeddings in a double vector-space model outperforms
not only off-the-shelf embeddings but also other ways of integrating these embeddings.
This is the first work that employs this approach to combine word embeddings.

2. We demonstrate that an evaluation measure derived from information-retrieval research
can take advantage of not only the rank ordering of word pairs but also the strength of
associations, as with the degrees of relevance represented by human annotators in test
datasets. Therefore, a measure such as RankDCG can be viewed as more psychologi-
cally plausible than measures traditionally used to compute the correlation with human
judgements, e.g. Spearman’s rank or Pearson’s product-moment correlation coefficients.
Indeed, as we introduced the possibility to tune RankDCG to assess word associations on
rank ordering only or taking into consideration also the associative strength, we managed
to analyse the vector-space models generated by several word-embedding techniques
through a different exploratory lens, going beyond the results provided by traditional
measures. This is the first work that employs RankDCG to evaluate word embeddings.

The remainder of this article is organised as follows. Section 2 describes the most rele-
vant works for this study. Section 3 provides an accurate account of the proposed research
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method. Section 4 describes a variety of experiments, whereas Sect. 5 evaluates WALE
and Section 6 interprets the results. Finally, Sect. 7 presents some conclusions.

2 Related work
2.1 Distributional semantics
2.1.1 Constructing word-vector models

Distributional semantics, or vector-space semantics, is a usage-based model to represent
meaning since it “builds semantic representations from co-occurrence statistics extracted
from corpora as samples of language usage” (Lenci 2018, p. 165). Distributional seman-
tics is based on Harris’ (Harris 1954) distributional hypothesis, which was famously sum-
marized in Firth’s (1957 , p. 11) statement “You shall know a word by the company it
keeps”. In this context, words are represented as real-valued numbers in vectors, where
each number captures a dimension of the meaning of each word so that semantically simi-
lar words are mapped to proximate points in the vector-space model. More specifically, the
weights that comprise a word vector are learned by making predictions on the probability
that other words are contextually close to a given word. Therefore, semantic relatedness is
determined by looking at word co-occurrence patterns in corpora so that “contextual simi-
larity then becomes proximity in space” (Erk 2012, p. 635).

Distributional semantics can leverage computational methods to learn meaning rep-
resentations from language data. There are two primary approaches to train word-vector
models: count models and predict(ive) models (Baroni et al. 2014). On the one hand, dis-
tributed semantic models can use simple linear algebra on word-to-word co-occurrence
counts to reflect the importance of contexts. Some classical weighting functions of count
models are raw frequency, tf-idf, pointwise mutual information, or log-entropy. Moreover,
as co-occurrence matrices are highly dimensional because the dimensions correspond to
the hundreds of thousands of words in a given corpus, these matrices can be factorized
to reduce dimensionality, e.g. by using Singular Value Decomposition (SVD) or Principal
Component Analysis (PCA), among other techniques. In this way, word vectors are not
only more compact but also contain more discriminative dimensions, which makes these
representations more effective for semantic-relatedness detection. Concerning the psycho-
logical plausibility of this approach, Mandera et al. (Mandera et al. 2017, p. 58) explained
that:

the counting step and its associated weighting scheme could be seen as a rough
approximation of conditioning or associative processes and that the dimensionality
reduction step could be considered an approximation of a data reduction process per-
formed by the brain

although “it cannot be assumed that the brain stores a perfect representation of word-con-
text pairs or runs complex matrix decomposition algorithms in the same way as digital
computers do” (ibid. Mandera et al. 2017). Some examples of count models are Latent
Semantic Analysis (LSA) (Deerwester et al. 1990), Hyperspace Analogue to Language
(HAL) (Lund and Burgess 1996), Latent Dirichlet Allocation (LDA) (Blei et al. 2003), and
Hellinger PCA (Lebret and Collobert 2014).
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On the other hand, predictive models, or neural-network models (Bengio and Senécal
2003; Bengio et al. 2003; Morin and Bengio 2005; Collobert and Weston 2008; Mnih and
Hinton 2008; Mikolov et al. 2013c), use a non-linear function of word co-occurrences,
where word embeddings capture more complex information than just co-occurrence
counts.! Indeed, (Mandera et al. (2017)) recognized that predictive models are much better
psychologically grounded than count models since the underlying principle of implicitly
learning how to predict a word from other words is congruent with biologically inspired
models of associative learning. One of the most popular neural-network models is Word-
2Vec, supported by Google (Mikolov et al. 2013a, b, ¢). Word2Vec is a neural network
with a single hidden layer that takes a single word as input and returns the probability
that the other words in the corpus belong to the context of the input word. The output of
this process is a matrix of n words by k dimensions, or neurons of the hidden layer of the
model. Therefore, the hidden layer is introduced to reduce dimensionality, where a non-lin-
ear activation function transforms the activations of outcomes to probabilities. Word2Vec
can be implemented in two different architectures, i.e. CBOW, where the model attempts to
predict the target word from a set of context words, and Skip-gram, where the model pre-
dicts the context words from a target word.

Since Word2Vec first came on the scene, other popular word-embedding training tech-
niques have emerged, such as GloVe (Pennington et al. 2014), supported by the NLP
research group at Stanford University, and FastText (Bojanowski et al. 2017), developed by
Facebook. On the one hand, GloVe builds word embeddings by taking into consideration
the frequency of co-occurrences over the whole corpus. It should be recalled that Word-
2Vec learns embeddings by relating target words to their context, but it ignores whether
some context words appear more often than others. Therefore, instead of the log-linear
model representations that use local information only in Word2Vec, GloVe exploits global
statistical information by using a weighted least-squares model that trains on global word-
word co-occurrence counts. It should be noted that GloVe can be considered as a dense
count-based method (Riedl and Biemann 2017) since it is based on co-occurrence statis-
tics and does not predict contexts from words directly, as performed in Word2Vec. Indeed,
GloVe learns by constructing a co-occurrence matrix, which is factorized to achieve a
lower-dimension representation, which brings it close to LDA. However, GloVe uses neu-
ral methods to decompose the co-occurrence matrix into more expressive and dense word
vectors. As concluded by (Pennington et al. (2014)), GloVe is a model that employs the
benefit of count-based methods to capture global statistics while simultaneously capturing
the meaningful linear substructures prevalent in prediction-based methods.

On the other hand, FastText is an extension of the Skip-gram architecture implemented
by Word2Vec that enriches embeddings with sub-word information using bags of charac-
ter n-grams. In Word2Vec and GloVe, embeddings are constructed directly from words,
which are the smallest units in the training. In contrast, FastText represents each word as a
bag of character n-grams (i.e. sub-word units). A vector representation is associated with
each character n-gram, and the average of these vectors provides the final representation
of the word, from which a Skip-gram model is trained to learn the embeddings. One of
the benefits of FastText is that it works well with rare words, or even with words that were
not seen during training, since such words can be broken down into n-grams to get their
embeddings.

! In this article, we employ the term “word embedding” in a narrow sense, that is, to refer to distributional
vectors built with neural networks.
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It is worthwhile to mention that a new generation of algorithms based on neural lan-
guage models is now able to construct contextualized word embeddings (Liu et al. 2020b;
Pilehvar and Camacho-Collados 2020). These dynamic context-dependent representations
are better suited to capture sentence-level semantics than static context-independent word
embeddings (i.e. Word2Vec, GloVe, and FastText). In this regard, one of the most popular
architectures is BERT (Devlin et al. 2019). In traditional neural embeddings, each word has
a fixed real-valued vector representation regardless of the context within which the word
appears or the different meanings it can have. In contrast, BERT produces word representa-
tions that are dynamically modelled by surrounding words, so it generates different embed-
dings for each occurrence of a given word in the corpus. As a result, contextualized word
embeddings cannot be used directly for word-association tasks due to the lack of sentential
contextualization. As explained by (Wang et al. (2020) , p. 1), there are several methods to
obtain static embeddings from dynamic embeddings:

For example, the contextualized vectors of a word can be averaged over a large cor-
pus. Alternatively, the word vector parameters from the token embedding layer in a
contextualized model can be used as static embeddings.

However, their experiments showed that these methods do not necessarily outperform tra-
ditional static embedding models, which is why our research only focused on the latter.

2.1.2 Combining word vectors

Over the last decade, some studies described semantic models developed from the integra-
tion of independent word vectors, motivated by the belief that:

The plethora of measures available in the literature suggests that no single method is
capable of adequately quantifying the similarity/relatedness between words. There-
fore, combining different approaches may provide a better result. (Niraula et al.
(2015) , p. 200)

(Agirre et al. (2009)) employed a hybrid model. On the one hand, they computed a per-
sonalized PageRank vector of probability distributions over the WordNet graph for each
word. On the other hand, they constructed a corpus-based vector-space model from dif-
ferent approaches, i.e. bag of words, context window and syntactic dependency, where the
method based on context windows provided the best results for similarity and the bag-of-
words representation outperformed for relatedness. Finally, they demonstrated that distri-
butional similarities can perform as well as the knowledge-based approach, and the com-
bination of both models using a supervised learner can exceed the performance of results.

(Tsuboi (2014)) showed that the combination of Word2Vec and GloVe embeddings
improves accuracy in POS tagging, outperforming the separate use of those embeddings.

(Faruqui and Dyer (2014)) proposed a technique based on Canonical Correlation Analy-
sis (CCA) that first constructs independent vector-space models in two languages and then
projects them onto a common vector space, where translation pairs can be maximally cor-
related. In particular, they constructed LSA word vectors for English, German, French, and
Spanish, and then projected the English word vectors using CCA by pairing them with the
vectors in the other languages. The experiment was also performed with Skip-gram vectors
from the neural-network approach.

(Niraula et al. (2015)) explored how to combine heterogeneous semantic models of
word representations. In particular, they experimented with count models such as LSA and
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LDA and predictive models such as Word2Vec and GloVe, evaluating all the combinations
of these models. They showed that measures of word relatedness and similarity can be
improved by combining diverse representations in two different ways: (a) extend, where
individual vectors are added to create a new vector, and (b) average, where semantic-sim-
ilarity scores are computed and then the mean score is taken. In this regard, the average
method yielded better results. For example, the average combination of LDA, Word2Vec
and Glove outperformed individual vectors. The rationale behind this approach of combin-
ing individual word representations is the assumption that different models represent dif-
ferent aspects of the meaning of words. Their experiments also demonstrated that a given
combination of models does not perform equally well in word similarity and word related-
ness. The distributional hypothesis leads us to expect that it is more likely to give higher
scores for chicken—egg than chicken-hen because the former has a higher number of co-
occurrences in a text corpus compared to the latter. Consequently, they suggested that a
knowledge-based approach is a must to improve similarity measures.

(Goikoetxea et al. (2016)) showed that the concatenation of word embeddings learned
independently from different sources, e.g. a text corpus and WordNet, produces better per-
formance than learning a representation space from one single source. On the one hand,
corpus-based representations were derived from Word2Vec. On the other hand, the struc-
ture of WordNet was encoded by combining a random walk algorithm and dimensionality
reduction to create compact contexts in the form of a pseudo-corpus, from which distrib-
uted representations were produced using Word2Vec. Moreover, they tried simple combi-
nation methods, e.g. averaging similarity results or concatenating vectors, and more com-
plex methods, e.g. CCA (Faruqui and Faruqui and Dyer (2014)) and retrofitting (Faruqui
et al. 2015), demonstrating that simple techniques outperform the more complex tech-
niques in similarity and relatedness tasks.

(Lee et al. (2016)) proposed a novel approach for measuring semantic relatedness by
combining the Word2Vec and GloVe word-embedding models, which were trained on
Common Crawl and Google News respectively, with WordNet through a weighted compo-
sition function. The semantic-relatedness score was computed with Equation 1, where
cos(v, » VW;) is the cosine similarity between the vector representations of word w; and w;,
dist(S,,,,S;,) 1s the path distance between the sense m of w; and the sense n of w; in Word-

iim>j.n
Net, and 4 is a weighting factor between 0 and 1.

rel(w;, w;) = rrr}&x A * cos(vwl, ij) +(1 - A)m (1
Their experiments demonstrated that performance increased with the linear combination
of word embeddings and WordNet. In particular, according to Equation 1, the best results
were obtained with GloVe, rather than with Word2Vec, where A = 0.75.

(Yin and Schiitze (2016)) proposed methods for the generation of a “meta-embedding”,
i.e. ensembling distinct word embeddings to create a new embedding. The rationale for
this approach is that there is a variety of methods for the production of word embeddings
where the overall quality significantly depends on the neural-network model and the lan-
guage resource. Therefore, meta-embeddings have two key benefits: enhancement and
coverage. In other words, a meta-embedding is expected to contain more information and
cover more words than the individual embeddings from which the meta-embedding was
derived. The alternative is to directly improve the learning algorithm to produce better
embeddings, but this strategy substantially increases the training time of embedding learn-
ing. These researchers introduced different ensemble approaches, from the simplicity of
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word-embedding concatenation to the complexity of meta-embedding learning methods
such as 1'TON and 1TON+. In this context, (Coates and Bollegala (2018)) showed empiri-
cal evidence that averaging across distinct embeddings results in performance comparable
to, and in some cases better than, concatenating embedding vectors.

Cross-lingual embedding models at the word level have also influenced our idea to com-
bine word embeddings. On the one hand, bilingual vectors can be trained online (Chan-
dar et al. 2014; Hermann and Blunsom 2013), where the source and target languages are
learned together in a shared vector-space model. Typically, this approach makes use of two
monolingual text corpora together with a smaller bilingual corpus of aligned sentences. On
the other hand, bilingual vectors can be obtained offline (Mikolov et al. 2013b; Faruqui and
Dyer 2014; Artetxe et al. 2016; Smith et al. 2017), after which a mapping-based approach
is required:

Mapping-based approaches [...] first train monolingual word representations inde-
pendently on large monolingual corpora and then seek to learn a transformation
matrix that maps representations in one language to the representations of the other
language. They learn this transformation from word alignments or bilingual diction-
aries. (Ruder et al. 2019, p. 581)

As the geometric constellation that holds between words is similar across languages, it is
possible to transform the vector space of the source language to the vector space of the
target language by employing a technique such as SVD or CCA to learn a linear projection
between the languages.

2.1.3 Word embeddings in text classification

With the exponential increase in text content on the Web (e.g. news articles, customer
reviews, tweets, etc.), automatic text classification plays a critical role. To this end, many
studies have chosen to use static word embeddings in a wide variety of NLP tasks, e.g.
topic categorization (Zhang et al. 2020), sentiment analysis (Smetanin and Komarov 2019;
Demotte et al. 2020), fake-news detection (Goldani et al. 2021), and natural language
understanding (Pylieva et al. 2019), among others. In this context, our research, which is
aimed at generating high-quality word embeddings, can contribute to significantly improv-
ing the underlying model of such text-classification systems. In particular, pre-trained word
embeddings have been primarily employed as part of topic models and deep neural net-
work-based methods in the last few years.

On the one hand, LDA is by far the most popular topic model in current use, which can
infer the probability distribution of hidden topics in a given document and that of words
in a given topic. Some of the latest research efforts in topic modelling have been aimed at
improving LDA with semantic similarity. Bhutada et al. (2016) proposed Semantic LDA,
where they computed topic membership by including in the LDA process two new matrices
constructed from the attribute values derived from word- and synonym-frequency informa-
tion, from which a new measure was used to find the similarity between documents. Poria
et al. (2016) presented Sentic LDA, which integrates word distributions with word similari-
ties through the common-sense knowledge in SenticNet (Cambria et al. 2014). Jingrui et al.
(2017) proposed a method of optimizing the purity of the topics discovered by LDA based
on the semantic similarity between the topics and the categories of news. Moreover, several
proposals have been recently presented to integrate LDA with word embeddings. Yu et al.
(2017) proposed the Multilayered Semantic LDA, which relies on Word2Vec embeddings
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to obtain the semantic similarity of words and thus extract the dimension hierarchies of
tweeters’ interests. Budhkar and Rudzicz (2019) combined LDA probabilities with Word-
2Vec representations to increase the accuracy of clinical-text classification. Akhtar et al.
(2019) proposed fuzzy document representations generated by LDA, where each document
is represented as a fuzzy bag of words using Word2Vec to calculate word-level semantic
similarity. Zhang et al. (2020) described the FastText-based Sentence-LDA model. Specifi-
cally, cosine-based similar words from FastText are integrated into Sentence-LDA (Jo and
Alice 2011), which relies on the idea that all words in a single sentence are generated from
one topic, thus producing significant improvements in topic modelling over short texts.

On the other hand, according to the most commonly used architectures of deep-learn-
ing models for text classification (Minaee et al. 2021), pre-trained word embeddings tend
to be explored by the following categories of neural networks: recurrent neural networks
(RNNS), convolutional neural networks (CNNs), siamese neural networks (SNNs), and cap-
sule networks. First, one of the most popular RNN-based models, which regard the text as
a sequence of lexical structures, is long short-term memory (LSTM), which was designed
to better capture long-term word dependencies. Indeed, Pylieva et al. (2019) tested several
RNN architectures to identify French medical words that are difficult to be understood by
non-expert users. They found that adding FastText embeddings to the set of features sub-
stantially improves the performance of LSTM. Demotte et al. (2020) demonstrated that the
sentiment analysis of Sinhala news comments performs better when sentence-state LSTM
(Zhang et al. 2018) is trained with FastText embeddings. Second, many studies have also
focused on CNN-based models, which are trained to recognize patterns in text. Smetanin
and Komarov (2019) employed Word2Vec embeddings as the input of a CNN architecture
for the sentiment analysis of product reviews in Russian. Kulkarni et al. (2021) performed
several experiments to evaluate the classification of Marathi texts using FastText embed-
dings in conjunction with deep-learning models such as CNN, LSTM, and BERT. They
found that CNN and LSTM coupled with FastText embeddings perform on par with BERT,
which is computationally more complex. Third, SNNs are usually exploited to compute
semantic textual similarity in NLP. For example, De Souza et al. (2019) trained an SNN
architecture with Word2Vec embeddings and a set of lexical, semantic, and distributional
features to perform semantic textual similarity in Portuguese texts. Finally, capsule net-
works, which have shown great performance in image recognition, deal with the infor-
mation-loss problem suffered by the pooling operations of CNNs. Goldani et al. (2021)
employed Word2Vec embeddings as the input to capsule networks to detect fake news in
short news items.

2.2 Word associations
2.2.1 Measuring word associations

The measures of semantic similarity and relatedness in NLP have been devised from a
knowledge- and/or corpus-based model. In this section, we focus on the variety of methods
that leverage knowledge bases, word embeddings, or both of them to measure the semantic
association between words.

First, the knowledge-based model is aimed at computing semantic associations from
the information stored in lexical knowledge bases, where WordNet (Fellbaum 1998) has
become the most commonly used resource. In particular, this model primarily relies on the
structure of ontologies or semantic networks (i.e. topology-based methods), the definitions
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of words (i.e. gloss-based methods), or the vectors that encode lexical meanings. On the
one hand, topology-based methods deal with the path distance between words (Rada et al.
1989; Wu and Palmer 1994; Leacock and Chodorow 1998; Li et al. 2003; Pedersen et al.
2007) and/or the information content (IC) of words (Resnik 1995; Lin 1998; Jiang and
Conrath 1997; Seco et al. 2004; Zhou et al. 2008; Jiang et al. 2017). In topology-based
methods, the knowledge base is considered as a graph, where word senses are nodes and
semantic relations are edges. According to Rada et al. (1989), if A and B are two concepts
represented by the nodes a and b, respectively, then distance(A, B) returns the minimum
number of edges that separate a and b. In this context, Wu and Palmer (1994) introduced
the notion of the Least Common Subsumer (LCS), which is the lowest concept shared
by two given concepts in an ontology. In IC-based methods, the association between two
words is determined by the IC that both words have in common. Most of these methods
are grounded on Resnik’s (1995) notion of IC, which is based on the number of occur-
rences of words in a corpus and the number of senses of words in the ontology. Moreover,
IC takes into consideration the IS-A hierarchy; in particular, two words are semantically
associated in proportion to the amount of information that is shared, which is determined
by the IC of the LCS. Therefore, the standard method to measure the IC of words consists
in combining the knowledge of the hierarchical structure of an ontology with the statistics
about the real use of words in a corpus. It should be noted, however, that some research-
ers, e.g. Seco et al. (2004) and Zhou et al. (2008), managed to compute the IC without
recourse to corpora. On the other hand, gloss-based methods (Lesk 1986; Banerjee and
Pedersen 2003) primarily rely on the definitions of words. Lesk (1986) proposed comput-
ing word associations through the overlap between the definitions or glosses of words, on
the assumption that the words that frequently co-occur in linguistic realizations are seman-
tically related because they are used together to convey a particular idea. Banerjee and
Pedersen (2003) extended Lesk’s algorithm by including neighbouring words found in the
glosses of related meanings. Finally, vector-based methods are aimed at representing the
meaning of words as vectors derived from the relational information in the graph-based
representation of the knowledge base. Patwardhan (2003) presented a measure of semantic
relatedness based on gloss vectors, i.e. context vectors constructed from WordNet glosses
and augmented using WordNet relations. Therefore, the semantic relatedness of two words
is simply the cosine similarity between their normalized gloss vectors. Agirre and Agirre
and Soroa (2009) applied a random-walk algorithm based on Personalized PageRank to
WordNet, where each word was finally represented as a vector in a multi-dimensional con-
ceptual space, with one dimension for each concept in WordNet. Goikoetxea et al. (2015)
also employed random walks based on PageRank over WordNet, thus creating synthetic
contexts for words. The corpus of such pseudo-sentences was then fed into Word2Vec to
create word embeddings. In this context, researchers such as Tang et al. (2015) and Grover
and Leskovec (2016) also explored how to compress the structural information of large
semantic networks into a few hundred dimensions representing latent semantic features.
Second, the corpus-based model of semantic similarity and relatedness is inspired by
distributional semantics, where one of the latest approaches is based on neural networks
(Sect. 2.1.1). In this case, semantic associations are quantified as the spatial distance
between the embeddings of two words through the cosine coefficient. It should be noted
that the vector-space model is not able to discriminate among different meanings of a word,
what Camacho—Collados and Pilehvar (2018 Camacho-Collados and Pilehvar (2018))
called “meaning conflation deficiency”. In other words, each word type has a single word
vector, so polysemy and homonymy are ignored. A solution to deal with the meaning con-
flation deficiency of word embeddings is to construct an independent representation for
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each meaning of a given word. Such multi-sense embedding models can be generated from
annotated corpora, but producing sense-annotated data on a large scale is a labour-inten-
sive and time-consuming task. For this reason, some researchers deconflated words into
specific word-sense vectors from non-annotated text documents. For example, Iacobacci
et al. (2015) applied word-sense disambiguation to Wikipedia texts with BabelNet (Navigli
and Ponzetto 2012) to create an annotated corpus, which was then processed with Word-
2Vec. Ruas et al. (2019) devised Most Suitable Sense Annotation (MSSA), an unsuper-
vised algorithm based on WordNet that can process a collection of articles from Wikipe-
dia to identify the synset for each word in the corpus; in the training step, they employed
Word2Vec to obtain multi-sense embeddings. However, there have also been other studies
where single-vector representations of word meaning have exhibited strong performance
on NLP tasks (Salehi et al. 2015; Iacobacci et al. 2016; Kober et al. 2017). For example,
Kober et al. (2017) demonstrated that a single vector that conflates the different senses of a
polysemous word is sufficient for recovering sense-specific information and thus discrimi-
nating the meaning of a word in context in tasks such as phrase similarity and word-sense
disambiguation. They concluded that additive composition helps to perform local disam-
biguation for any lexeme in a phrase, and thus “the act of composition contextualises or
disambiguates each of the lexemes thereby making the representations of individual senses
redundant” (Kober et al. (2017), p. 80).

Third, word-embedding models that complement distributional information from cor-
pora with relational information from knowledge bases have received much attention in
the last decade. Such hybrid models can be categorized into three groups. On the one
hand, information fusion can take place during the construction of word embeddings, so
the method jointly learns from both the corpus and the knowledge base. For example, Xu
et al. (2014) introduced a method called RC-NET, which models relational and categorical
knowledge from Freebase (Bollacker et al. 2008) as regularization functions, combining
both types of knowledge with the original objective function in the Skip-gram architecture
of Word2Vec in the training of a Wikipedia corpus. Yu and Dredze (2014) presented the
Relation Constrained Model, which incorporates prior knowledge contained in WordNet
and the Paraphrase Database (Ganitkevitch et al. 2013) to extend the objective function in
the CBOW architecture of Word2Vec. Bollegala et al. (2016) proposed a method that uses
the relational constraints provided by WordNet to regularize corpus-derived word embed-
dings learned by GloVe. Nguyen et al. (2016) integrated lexical contrast information (i.e.
antonym-synonym distinction) into the objective function of the Skip-gram architecture of
Word2Vec. On the other hand, pre-trained word embeddings can be enriched with rela-
tional information from knowledge bases in a post-processing stage. For example, Faruqui
et al. (2015) applied a technique called retrofitting to fine-tune word embeddings through
the structure of a knowledge graph, so that words that are connected in the semantic net-
work become closer in the vector space. It is noteworthy to mention that several researchers
experimented with different variants of retrofitting, e.g. graph-based retrofitting and skip-
gram retrofitting (Kiela et al. 2015), expanded retrofitting (Speer and Lowry-Duda 2017),
and functional retrofitting (Lengerich et al. 2017), among others. Rothe and Schutze (2015)
created AutoExtend, a system that extends standard word embeddings to embeddings of
WordNet synsets in the same space. Although the system originally focused on WordNet, it
can also be used with other knowledge bases. Johansson and Pina (2015) constructed sense
vectors by embedding the graph structure of a semantic network into the corpus word space
based on the assumption that (a) the embeddings of polysemous words can be decomposed
into a convex combination of sense embeddings, and (b) these sense embeddings should
preserve the structure of the semantic network; indeed, these two assumptions constitute an

@ Springer



C. Periddn-Pascual

optimization problem, where the first is a constraint and the second is the objective. Mrksié
et al. (2017) presented the Attract-Repel algorithm, which injects synonymy and antonymy
constraints from mono- and cross-lingual resources to yield specialized vector spaces, thus
improving their ability to capture semantic similarity. Pilehvar and Collier (2017) proposed
a technique that exploits lexical resources to expand the vocabulary of pre-trained word
embeddings, which is very useful to infer the meaning of infrequent domain-specific terms.
In particular, Personalized PageRank (Haveliwala 2002) can process lexical resources to
extract a set of semantic landmarks, which are employed to place rare words in the most
significant region of the semantic space. Finally, there are some models (e.g. Goikoetxea
et al. 2016) that combine word embeddings learned independently from different types of
sources, i.e. corpus and knowledge base.

2.2.2 Evaluating word associations

In recent years, there has been a revival of interest in the research of word-vector models
together with word associations in fields such as NLP and psycholinguistics, which view
the issue from different but complementary perspectives. On the one hand, the high-qual-
ity vector representation of words is extremely important for many NLP tasks that can be
improved by using word-embedding similarities, e.g. in text summarization (Gross et al.
2016) or information retrieval (El Mahdaouy et al. 2018), among others. Moreover, various
evaluation methods have been proposed to test the quality and coherence of a given vec-
tor-space model, where word similarity and relatedness tests are currently the most popu-
lar (and computationally inexpensive) methods (Pilehvar and Camacho-Collados 2020).
In this regard, the semantic proximity of two words in a vector-space model is evaluated
against the actual distance derived from human judgements. Typically, a set of word pairs
is ranked according to the cosine-similarity scores computed through word vectors, and
then the correlation with the ratings of human annotators is measured (e.g. Spearman’s
and/or Pearson’s correlation coefficients). The best model is the one that comes closest
to human ratings. In this context, a large number of studies on testing word associations
through embeddings have been conducted. For example, Cattle and Ma (2017) undertook
some incipient research into cosine similarities derived from Word2Vec and GloVe to
predict associative strengths in word-association norms. However, in all of these studies,
research results are reported using evaluation measures that do not focus on the strengths.
On the other hand, the relevance of word embeddings in psycholinguistics is recently
reflected in works such as Giinther et al. (2016), who concluded that lexical priming effects
can be predicted from distributional semantics models (e.g. LSA and HAL), or Bhatia
(2017), who demonstrated that pre-trained vector representations based on techniques such
as Word2Vec and GloVe can predict the associations involved in a large range of judgement
problems. After conducting several experiments with word similarity and relatedness tests,
(Gladkova and Drozd 2016, 2016: p. 38 ) stated that they did not know “to what extent
word embeddings are cognitively plausible, but they do offer a new way to represent mean-
ing that goes beyond symbolic approaches”. In this regard, (Mandera et al. 2017, 2017: p.
57) suggested that the learning mechanisms of neural-network models might resemble how
humans learn the meaning of words, so “these models bridge the gap between traditional
approaches to distributional semantics and psychologically plausible learning principles”.
To this end, they compared the performance of predictive models with that of the methods
currently used in psycholinguistics, performing a variety of experiments involving not only
word association norms but also semantic similarity and relatedness ratings. In line with
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previous findings (Baroni et al. 2014; Levy and Goldberg 2014), they demonstrated that
predictive models were generally superior to count models.

Finally, another psycholinguistic study that influenced our research was De Deyne et al.
(2016), who suggested that, when people judge word similarity, they may be relying more
on networks of semantic associations than on statistics calculated from the distributional
patterns of words, thus drawing on Taylor’s (2012) distinction between external and inter-
nal language models. On the one hand, an external language model (e.g. word embeddings
generated from text corpora) treats language as an “external” object consisting of all the
utterances made in a given speech community. On the other hand, an internal language
model (e.g. a network of semantic associations) sees language as the body of knowledge
residing in the brains of its speakers. De Deyne et al. (2016) relied on the idea that word
associations capture representations that cannot be reflected in the distributional properties
of an external language model, which is shaped by pragmatic and communicative consid-
erations. In other words:

word associations are not merely propositional but tap directly into the semantic
information of the mental lexicon [...]. They are considered to be free from pragmat-
ics or the intent to communicate some organized discourse, and thought to be simply
the expression of thought. (De Deyne et al. (2015), p. 1646)

For example, yellow is strongly associated with banana, but the two words rarely co-occur
in discourse because most bananas are yellow, so mentioning yellow together with banana
is uninformative. In their experiments, they used several standard datasets of word simi-
larity and relatedness to evaluate external language models constructed from text corpora
and internal language models constructed from a semantic graph derived from the English
Small World of Words (SWOW-EN) De Deyne et al. (2019), consisting of over 12,000 cue
words and 300 associations for each cue resulting from judgements from over 90,000 par-
ticipants. They showed, for example, that an internal language model grounded on Word-
2Vec embeddings substantially outperformed an external language model grounded on a
random-walk semantic graph. However, the superior performance of this internal language
model is unsurprising: the model was constructed from data derived from free-association
tasks and then compared with human judgements on word associations, inevitably result-
ing in a biased evaluation.

2.3 Ensemble application of symbolic and sub-symbolic approaches to natural
language processing

For several decades, semantic systems have been predominantly developed around knowl-
edge graphs (e.g. semantic networks and ontologies), which usually store logically sound
structured representations of manually encoded knowledge. In the last decade, sub-sym-
bolic artificial intelligence, which typically relies on some form of automatic learning from
numerical, statistical or distributed data by machine-learning or neural-network models,
has also become a mainstream area of research. Indeed, most of the current research in arti-
ficial intelligence is sub-symbolic, where neural language models aimed at exploring large
amounts of data to make categorizations and predictions, e.g. ELMo (Peters et al. 2018),
BERT (Devlin et al. 2019) and GPT-2 (Radford et al. 2019), among others, have revolu-
tionized the field of NLP. It should be noted, however, that transforming lexical items into
numbers enables us to discover hidden patterns in data but does not provide much informa-
tion about the items themselves. Advances in real-world natural language understanding
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applications should be grounded on hybrid systems that combine large-scale symbolic rep-
resentations of knowledge with sub-symbolic methods. As explained by Gomez-Perez et al.
(2020), the combination of symbolic and sub-symbolic approaches will be critical for the
next leap forward in NLP, where language models capture how sentences are constructed
and knowledge graphs contain a conceptualization of the entities and relations in a given
domain. In this context, our research focuses on the word-embedding enrichment resulting
from the combination of distributional information from corpora and relational information
from knowledge bases. As word embeddings have been lately explored by deep-learning
language models (Sect. 2.1.3), the remainder of this section presents the most recent efforts
in enhancing language models with external knowledge for a variety of NLP tasks.

In text classification, Zhang et al. (2019) and Ostendorff et al. (2019) enhanced BERT
with Wikidata embeddings (Vrandecic and Krotzsch 2014), and Meng et al. (2019)
improved classification accuracy when semantic information from DBpedia (Bizer et al.
2009) was used with a multi-level CNN. In zero-shot text classification, where the model
can detect classes that are not included in the training dataset, Liu et al. (2020a) employed
the category knowledge from ConceptNet (Speer and Lowry-Duda 2017) to construct
semantic connections between the seen and unseen classes, so that a CNN could classify
the unseen classes by information propagation over the connections.

In story generation, some researchers demonstrated that common-sense knowledge can
contribute to generating more coherent texts. Yang et al. (2019a) devised a memory-aug-
mented neural model with adversarial training to incorporate knowledge from ConceptNet
into an automatic topic-to-essay generation system. Guan et al. (2020) proposed a knowl-
edge-enhanced pre-training model for story generation by extending GPT-2 with knowl-
edge from ConceptNet and ATOMIC (Sap et al. 2019). Yang and Tiddi (2020) developed
a story-generation system named DICE, which injects knowledge from ConceptNet, Word-
Net, and DBpedia into a GPT-2 model.

In machine reading comprehension, Mihaylov and Frank (2018) employed WordNet and
ConceptNet to enrich text representations, which were learned by a Bi-directional Gated
Recurrent Unit to infer the answer of common-noun and named-entity questions. Wang
and Jiang (2018) proposed Knowledge Aided Reader, which relies on the general knowl-
edge extracted from passage-question pairs with the aid of WordNet to assist the atten-
tion mechanisms of a bidirectional LSTM model. Yang et al. (2019b) introduced KT-NET,
which employs an attention mechanism to select knowledge from WordNet and NELL
(Carlson et al. 2010) and then injects the selected knowledge into BERT to enable context-
and knowledge-aware predictions. Gong et al. (2020) proposed KCF-NET, a system that
employs a BERT embedding layer containing two encoding methods that compute the con-
text-aware representation and the knowledge-graph representation of the input text, respec-
tively, and then a fusion layer that integrates context information with external knowledge.

In question answering, Goodwin and Demner-Fushman (2020) presented OSCR (Ontol-
ogy-based Semantic Composition Regularization), which can inject world knowledge from
Wikipedia into BERT during pre-training to improve the performance of the system. Simi-
larly, Phan and Do (2020) combined BERT with a knowledge graph to enhance a Vietnam-
ese question-answering system about tourism.

In text summarization, Gunel et al. (2020) injected entity-level knowledge from
Wikidata into a Transformer-XL encoder-decoder Dai et al. (2019) to enhance abstractive
summaries.

The above examples serve to illustrate that top-down knowledge derived from semantic
networks and ontologies can effectively be combined or integrated with bottom-up knowl-
edge learned from text documents through neural networks, leading to a breakthrough in
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natural language understanding. Finally, a different case of the synergy of symbolic and
sub-symbolic approaches can be found in Cambria et al. (2020), who integrated logical
reasoning within deep learning architectures (i.e. bidirectional LSTM and BERT) to build
SenticNet.

3 Proposed method
3.1 Combining word embeddings

In line with Taylor’s (2012) distinction between external and internal language models,
there are two approaches to represent lexical semantics that have been instrumental for
major advances in language technology, even though they were primarily motivated by psy-
cholinguistic research. On the one hand, the semantic-space approach represents the mean-
ing of a lexical unit through a vector in a high-dimensional space, where each component is
generated on the co-occurrence with the other units in contexts of language usage. On the
other hand, the semantic-network approach represents the meaning of a lexical unit within
a graph, whose nodes represent words and edges between nodes encode different types of
semantic relations holding among lexical units (e.g. synonym, hyponym, meronym, etc.).
In this context, one of the goals of this research is to combine both approaches by integrat-
ing embeddings derived from text corpora with embeddings derived from a semantic net-
work. Corpus-based embeddings represent a semantic space based on an external language
model, namely a collection of texts that were produced by English-language speakers. In
turn, network-based embeddings represent a semantic space based on an internal language
model, thus being closely aligned with the lexical knowledge in the minds of speakers. The
rationale behind this decision is that the complementarity of both approaches can help us
determine word associations that, for example, are rarely or never evidenced in relevant
context windows in the text collection but are likely to be encoded in a semantic network.
It should be noted that addressing a semantic network as a vector-space model is just a
notational issue. Indeed, as we managed to put both language models on equal grounds, we
facilitated the integration with corpus-based embeddings.

To implement both approaches computationally, we chose to reuse existing language
resources in the form of readily available pre-trained word vectors generated by differ-
ent techniques. In this case, let X € RIV*P be an embedding matrix, where V is the set of
words and D is the dimensionality of the embeddings, so Xl.W is the embedding of the i-th
word in the given matrix. On the one hand, we leveraged off-the-shelf deep neural embed-
dings to develop our corpus-based model. Indeed, we employed three types of corpus-
based embeddings:

(a) X"V, which contains vectors trained on part of Google News dataset (about 100 billion
words) using Word2Vec,? where | VY| is 3 million lexical units and D is 300,

(b) X%, which contains vectors trained on English Common Crawl Corpus using GloVe,*
where |V°V|is 2 million words and D is 300, and

2 The word embeddings were downloaded from https://code.google.com/archive/p/word2vec/.
3 The word embeddings were downloaded from http://vectors.nlpl.eu/repository.
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(c) XFT, which contains vectors trained on English Common Crawl Corpus and Wikipedia
using FastText,* where | V7| is 2 million words and D is 300. This model was trained
using CBOW with character n-grams of length 5, a window of size 5 and 10 negatives
(Grave et al. 2018).

On the other hand, we also used X"V, containing word embeddings trained on the Word-
Net semantic graph, where the strength of the semantic association between words was
determined based on the following premise: the larger the number of paths and the shorter
the paths connecting any two nodes, the stronger their association (Saedi et al. 2018).% The
original WordNet-based embedding matrix (WNet2Vec) was finally obtained by extract-
ing a subgraph containing 60,000 words that supported all parts of speech and all types
of semantic relations, where each relation was assigned the same weight.6 As a result, the
lexical knowledge encoded in the semantic graph was re-encoded as a word-embedding
matrix. We reduced the 850 dimensions of WNet2Vec to 300 through PCA so that net-
work-based embeddings could be easily integrated with the above corpus-based embed-
dings. After dimensionality reduction, word embeddings in WNet2Vec were unit-length
normalized.

Finally, together with these resources, we devised WALE (Word Association through
mulLtiple Embeddings), a parametric model that allows two views (i.e. WALE-1 and
WALE-2) to calculate the association strength of two words (i.e. cue and target) based on
the combination of two word-embedding matrices: the corpus-based matrix (X¢, which
can take the form of X"V, X%V, or X*T) and the network-based matrix (X"V). Equation 2
and Equation 3 are used to calculate WALE-1 and WALE-2, respectively, where a and f
are parameters, being @ + f = 1, and distance[X](cue, target) calculates the cosine distance
between the embeddings corresponding to the cue and target words in the matrix X.

WALE-1(cue, target) = 1 — distance[XC”WN ’](cue, target),

ve| 2)
where X"V results from Z (o * XkC’) +(f * XZVN’)
%

WALE-2(cue, target) = (a * (1 — distance[XC’](cue, target)))

, 3
+ (B * (1 — distance[X"V 1(cue, target))) )

To facilitate the combination between X¢ and X"V, we only took into consideration the
unigrams that were found in VWY N V6V n VT 0 V"N and that fell into the POS categories
of noun, verb, or adjective, where named entities were discarded. As a result, both X€ and
X" were reduced to X and X"V', respectively, each one consisting of 18,475 lemmas
with their corresponding embeddings.

WALE-1 and WALE-2 mainly result from the convergence of two factors: (a)
how to integrate the semantic-space approach (i.e. external language model) with the

* The word embeddings were downloaded from https:/fasttext.cc/docs/en/crawl-vectors.html.

5 The word embeddings were downloaded from https://github.com/nlx-group/WordNetEmbeddings.

® Saedi et al. (2018) also ran an experiment where different weights were assigned to different relations:
hypernymy, hyponymy, antonymy and synonymy got 1, meronymy and holonymy 0.8, and other relations
0.5. However, better results were obtained when the same weight was assigned to all types of semantic rela-
tion.

@ Springer


https://fasttext.cc/docs/en/crawl-vectors.html
https://github.com/nlx-group/WordNetEmbeddings

Measuring associational thinking through word embeddings

semantic-network approach (i.e. internal language model), and (b) how to combine the
word-embedding matrices (i.e. single or double vector-space model). Suppose that we
want to determine the association strength between car and vehicle as cue and target
words, respectively, and that, for the sake of simplicity, we assume that the corpus- and
network-based vectors corresponding to these words are as follows:

XC =]0.63 0.32 0.56 0.48] @)
X . =087 0.65 0.24 0.31] )
X"V =10.75 0.22 0.45 0.51] 6)
X"V =[0.71 0.57 0.31 0.43] )

On the one hand, with regard to (a), we can assign relative weights to X< and X"V to
explore the impact of each type of approach on the performance of the system. In this
regard, we use the parameters a and § in conjunction with X< and X"V', respectively. For
example, suppose that we intend to give more weight to the semantic representations con-
structed from the corpus rather than to those derived from the semantic network. In this
case, we could choose 0.7 and 0.3 for @ and f, respectively. On the other hand, with regard
to (b), we can consider integrating X¢ and X""' into a single or double vector-space model.
The single vector-space model consists in ensembling the word embeddings in X with
those in X"V to create a new X¢-W¥' 5o that we can compute a single similarity coefficient
between the meta-embedding representing the cue and that of the target in X¢-WV'. Fol-
lowing the previous example, the meta-embeddings corresponding to car and vehicle are
computed in Equation 8 and Equation 9, respectively, assuming that we set « to 0.7 and f
to 0.3.

XCMV = 0.7 % X$ )+ (0.3 % XV = [0.67 0.29 0.53 0.49] 8)
XSV = (0.7 % XS,,,) + (03 % X"V ) =1[0.82 0.63 0.26 0.35] 9)

In this case, the similarity between both meta-embeddings is 0.904. In contrast, the
word-embeddings in X¢ and X"V are not ensembled in the double vector-space model,
but we compute the weighted average of the cosine-similarity coefficients derived from
the vectors corresponding to the cue and the target in each matrix. In this case, the simi-

’

larity between X€ and XC is 0.88 and that between X"V and X"V is 0.93. There-
car vehicle car vehicle

fore, the association strength between car and vehicle is calculated in this model as
(0.7 % 0.88) + (0.3 * 0.93) = 0.895, using the same previous values for a and f.

3.2 Evaluating word associations
After more than four decades, agreement with the human ratings in a dataset of n pairs

of words is usually measured using Pearson’s product-moment correlation coefficient
(Equation 10), and/or Spearman’s rank correlation coefficient (Equation 11).
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In our case, x; is the score computed by WALE for the word pair < w;, w; >, y; is the score
provided by human annotators for the same pair of words, X is the mean of all values x;, y
is the mean of all values y;, and rank(x;) and rank(y;) represent the rank value of the i-th
pair of words according to the overall ranking of scores provided by WALE and human
annotators, respectively. Zesch (2010) explained that Pearson’s correlation suffers from
some limitations: (a) it is sensitive to outliers, (b) it can only measure a linear relationship
between the human-provided scores and those computed by the measure, and (c) the two
variables need to be normally distributed. To overcome these limitations, he recommended
using Spearman’s rank correlation coefficient instead, which is the non-parametric version
of Pearson’s product-moment correlation coefficient. Indeed, Spearman’s correlation does
not use the actual values to compute a correlation but the ranking of the values. Therefore,
it is not sensitive to outliers, non-linear relationships, or non-normally distributed data.

In contrast to all previous studies, we evaluated the effectiveness of a model for word asso-
ciations through a measure that can take advantage of not only the rank ordering of word
pairs, as in Spearman’s correlation coefficient, but also the strength of associations, as with the
degrees of relevance represented by human annotators in test datasets. To this end, we focused
on a suite of measures that have gained much popularity in the field of information retrieval
over the last decade, namely the cumulated gain-based techniques introduced by Jarvelin and
Kekéldinen (2000), Jarvelin and Kekéldinen (2002), i.e. cumulative gain, discounted cumula-
tive gain (DCG), and normalized discounted cumulative gain (NDCG).

In this type of techniques, a gain value must be assigned to each relevance level, where
these gain values should be chosen to reflect the relative differences between the levels. There-
fore, supposing that Q is a ranked list of pairs, the first step in the computation of NDCG is the
construction of the gain vector G, i.e. Gy = <s 15525535 coes Sgs oSy > where Glk] represents the
score assigned to the cue-target pair at the k rank in Q, being g the total number of pairs in Q.
The second step is the calculation of the cumulative-gain vector, where CGlk], i.e. the value
of the element & in CG, is the sum from 1 to k of the elements in G, as shown in Equation 12.

k
CGlkl = Y Gli] (12)
i=1

Before computing the cumulative-gain vector, a discount function can also be applied at
each rank so that the relevance values are discounted progressively as one moves down the
document ranking (i.e. the denominator in Equation 13).

o Glil

DCGlk] = _ 13

; log,(1 +1) (13)
As shown in Equation 14, the final step normalizes the DCG vector against the “ideal”
DCG vector (DCG’), which is constructed from the ideal gain vector G’, containing the
scores from the ordering of the word pairs in a gold-standard benchmark.
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i e moiaton seoren € Targe o Reference
Jazz Music 0.564 0.367
Champagne Bubble 0.291 0.163
Adult Responsible 0.086 0.041
Cancer Kill 0.488 0.020
Athlete Player 0.103 0.014
DCGlk]
NDCGIK] = == oA (14)

As explained by Katerenchuk and Rosenberg (2016), NDCG has some drawbacks. Indeed,
two issues could have a critical impact on the results of this research. On the one hand,
NDCG was originally designed for the evaluation of information-retrieval systems rather
than for rank-ordering evaluation. This means that NDCG takes into consideration the
number of relevant and irrelevant elements. However, virtually all cue-target pairs involved
in word-association tasks are relevant elements to a certain degree. As a result, the lower
bound is rarely equal to 0, so this measure would return a value whose range is from 1 to
some arbitrary number between 1 and 0. This could mean that a score such as 0.56 might
be returned by the worst ordering, which can lead us to misinterpret the results. On the
other hand, the discount function in DCG was originally designed to reward relevant search
results when they appear close to the top. However, the rank-ordering problem needs a
relative function with respect to the remaining elements. Otherwise, a strong bias towards
top-ranked elements can be introduced. To address both issues, Katerenchuk and Rosen-
berg (2016) modified NDCG to design RankDCG, which not only outperforms conven-
tional rank-ordering measures but also correctly handles multiple ties and produces a con-
sistent and meaningful scoring range [0, 1], among many other advantages.’

To illustrate RankDCG, which can be used with any number of elements, we take the
pairs of words in Table 1, which is supposed to contain the scores computed by our system
and the reference scores in a gold standard.

Therefore, the ideal gain vector G’ and the gain vector G computed by the model are as
follows, where subscripts represent the zero-based position in the gold-standard ranking:

G =(0.564,,0.291,,0.086,,0.488,,0.103,) (15)

G’ =(0.367,,0.163,,0.041,,0.020,,0.014,) (16)

First of all, the values in G and G’ are transformed into integers through a mapping func-
tion R. In this step, and unlike the original formulation of the measure, we can decide to
make RankDCG take into consideration (a) rank ordering only or (b) both rank ordering
and association strength. In particular, the function R assigns a rank-based number to every
score in option (a) and rescales the scores from 5 to 1,000 (i.e. min-max normalization)
in option (b). In the case of (a), after arranging the elements of G and G’ in descending
order, the top-rank element in each vector is mapped to the highest value, and then every

7 The original RankDCG code can be found in https://github.com/dkaterenchuk/ranking_measures.
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following distinct element is mapped to a value decreased by one (except with tie scores),
until the last element corresponds to 1. Therefore, the function R is applied to G and G’
according to these mappings, returning the D and D’ vectors, respectively:

D =(50,3y, 15,43, 24) 17

D' =(50,41,35,25, 14) (18)

In the case of (b), the function R rescales the scores in G and G’, returning the following
vectors:

D =(1000,,431,,5,,8415,40,) (19)

D' =(1000,,424,,81,,215,5,) (20)

For the sake of brevity and clarity, suppose that we opt for (a) in our example. In the next
step, the function R,,, is applied to D,,, and D:,ev to reverse the order of the elements:

Dy, =(20,44,15,35,54) Q1)

Dlm =(1p,21,35,43,54) (22)
In RankDCG, the DCG component is computed by Equation 23.

[
DCG"[k] = Z Db:—[’[]i]

i=1 rev

(23)
In this case, the vector E’ is constructed in two steps. First, the elements in the D,,, vector
are arranged in descending order, but their subscript values are retained:

E = (5;,41.33.20, 1) (24)
Second, the elements in D'm are rearranged according to the order of the subscripts in E:

E' =(5;,2y,43,15,3,) (25)
As aresult, the DCG” vector for our example is as follows:

DCG" = (5,6,7.33,7.58,8.18) (26)

Finally, DCG"[g] should be normalized from 0 to 1 to create a meaningful and consist-
ent lower bound (Equation 27), where max(DCG" [q]) is computed using the perfect-case
ordering, i.e. D = D', and min(DCG"[q]) is computed using the worst-case ordering, i.e.
D=D .

DCG"[q] — min(DCG" [q])
max(DCG"[q]) — min(DCG" [q])

RankDCG =

27)

In our example, where the value of DCG"'[g] is 8.18, the final result is computed as follows:

max(DCG") = (5,7,8,8.5,8.7) (28)
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l Test ‘ l Gold standard ‘
l l
G =(0.564,,0.291,,0.086,,0.4885,0.103,) G" =(0.367,,0.163,,0.041,,0.0204,0.014,)

) !

D =(50.31,1,,44,2,) D" =(5q,41,35,25,14)
} !

Dyey = (20,44,15,33,54 ) D)oy =1{10.21,3,,43,54)

} !

E =(54 41,3320, 1,) E'=(5421,4310,3;)

k
E'
DCG"[k] = Z = ,["[]1]

i=1

max(DCG'") = (5, 7.8,8.5,M DCG" = (5,6,7.33,7.58/8.18) min(DCG") = <1,2,3.4,

l

DCG"[q] — min(DCG"[q]) 818 -5
RankDCG = — - — = =
max(DCG"[q]) — min (DCG"[q]) 8.7-5

Fig.2 Description of RankDCG: an example

Table2 Sample of a group of

word pairs Cue Target Score
Accident Car 0.358
Accident Crash 0.128
Accident Pain 0.020
Accident Danger 0.014
min(DCG") =(1,2,3,4,5) 29)
8.18—-5

RankDCG = ——— =0.86

an 575 (30)

In contrast, if we had taken into consideration both rank ordering and association strength
in G and G’, the RankDCG coefficient would have been 0.93. In both cases, the closer to 1
the coefficient, the better the performance of the model. To conclude, Fig. 2 illustrates the
whole process of RankDCG.

Moreover, another difference concerning the state of the art lies in the method of eval-
uation. Apart from applying the above measures to a whole list of word pairs, we also
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performed independent comparisons of score rankings for multiple groups of pairs. In this
context, we define “group” as a set of cue-target word pairs that share the same cue, as
illustrated in Table 2.

This approach is motivated by the fact that participants in free-association experiments
are usually asked to produce only a single associate for each word, but the databases show
the aggregated results of many participants, so free associations do not provide an absolute
index of strength but a relative index. Indeed, Nelson et al. (1998) exemplified this limita-
tion as follows:

Knowing that the response “read” is produced by 43% of the participants to the cue
BOOK does not tell us how strong this response is in any absolute sense; it tells us
only that this response is stronger than “study” which was produced by 5.5% of the
participants. Unfortunately, free association norms like relatedness ratings provide
only ordinal measures of strength of association but, as far as we know, there are no
known measures of absolute strength.

Therefore, for a group-based evaluation, the RankDCG score of the model is calculated
with Equation 31, where £ is the number of groups in the test dataset Q, and RankDCGGf is

the RankDCG score corresponding to the group G;, which should be part of Q.
Y RankDCG |G; € Q
k

3D

AvgRankDCG =

3.3 Computational implementation

WALE has been computationally implemented as a web interface, developed in C# with
ASP.NET 4.0, where the user can explore WALE-1 and WALE-2 by computing the asso-
ciative strength of the word pairs in any of the ten gold-standard benchmarks for word
similarity and relatedness (Faruqui and Dyer 2014).% Indeed, this application also allows
researchers to conduct experiments with their datasets. Moreover, providing that the pairs
of words are accompanied with reference scores (e.g. the ratings of human annotators),
researchers can evaluate the effectiveness of the model through Spearman’s and Pearson’s
correlation coefficients as well as RankDCG, taking into consideration only rank ordering
or also the associative strength.

4 Experiments

We conducted a suite of experiments to examine the performance of WALE with different
types of word associations. Following (Faruqui and Dyer 2014), we employed ten gold-
standard benchmarks that have been widely used to prove the effectiveness of word vec-
tors: RG (Rubenstein and Goodenough 1965), MC (Miller and Charles 1991), WS-ALL
(Finkelstein et al. 2001), YP (Yang and Powers 2006), WS-SIM, WS-REL (Agirre et al.
2009), MTurk-287 (Radinsky et al. 2011), MTurk-771 (Halawi et al. 2012), MEN (Bruni

8 WALE is freely accessible from the FunGramKB website: http://www.fungramkb.com/nlp.aspx.
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et al. 2012), and RW (Luong et al. 2013).° These datasets are oriented to word similar-
ity (i.e. RG, MC, WS-SIM, and RW) and word relatedness (i.e. WS-ALL, YP, WS-REL,
MTurk-287, MTurk-771, and MEN), where the latter can contain syntagmatically and para-
digmatically related words. RG, MC, WS-SIM, and WS-REL contain only nouns and YP
only verbs, whereas MTurk-287, RW, WS-ALL, MTurk-771, and MEN include all kinds of
words, although nouns predominate. Finally, whereas datasets such as MC, RG, and WS-
ALL contain very frequent words, RW has a more diverse set of words in terms of frequen-
cies, having the largest number of rare words.

It should be noted that the words in the above datasets may or may not be associates.
For this reason, we also experimented with University of South Florida Free Association
Norms (FAN),!” which contains pairs of words where cue and target are meaningfully
associated, although they may or may not be semantically related. It should be recalled
that the traditional way to collect word-association norms in psycholinguistic research is
to present a word to several people (i.e. the stimulus) and ask them to express the first
word that comes to their minds upon receiving the stimulus (i.e. the response). FAN
(Nelson et al. 1998) contains 63,619 cue-target word pairs that have been normed, where
we make use of the Forward Cue-to-Target Strength score. The word-association norms
resulted from an experiment in which more than 6,000 participants, who produced nearly
three-quarters of a million responses to 5019 stimulus words, were involved in a discrete
association task. In particular, participants were asked to write the first word that came to
mind that was meaningfully connected or strongly associated with a given word. The great
majority of the stimulus words are nouns, but adjectives, verbs and other POS can also be
found. There was not a well-designed purpose in the choice of these stimulus words. It is
noteworthy to mention that there are other collections of word association norms, such as
Edinburgh Associative Thesaurus (EAT)!' and SWOW-EN.!? However, we chose to focus
only on FAN because the methodology of a given resource undoubtedly affects the type of
responses that participants can generate. In particular, whereas participants in SWOW-EN
were asked to respond with the first three words that came to mind in the broadest possible
sense, and those in EAT were asked to write down for each cue the first word they could
think of as quickly as possible, participants in FAN were asked to write down the first word
that came to mind that was “meaningfully related or strongly associated to the presented
cue word”.

The goal of our experiments was to assess the significance of several factors using the
above test datasets, such as the word-embedding technique (i.e. Word2Vec, Glove, and
FastText), the model for the projection of distinct word-embedding matrices (i.e. single
or double vector-space model, that is, WALE-1 or WALE-2, respectively), the degree of
integration of external and internal language models (i.e. the parameters a and f in WALE,
respectively), the evaluation measure (i.e. Spearman’s and Pearson’s correlation coeffi-
cients and RankDCG), and the dataset size. To conduct these experiments, we had to make
XWV' XSGV’ XFT" and X"V’ share the same vocabulary, i.e. 18,475 lemmas, so we also had
to reduce the size of the above datasets to include only valid words. Moreover, for group-
based evaluation, all pairs in FAN that (a) could not be grouped around a common cue or
(b) had the same score with other pairs in the same group were further discarded. As we

% These datasets were downloaded from https://github.com/mfaruqui/word-vector-demo/tree/master/data.
10" http://w3.usf.edu/Free Association/.

! http://rali.iro.umontreal.ca/rali/?q=en/Textual %20Resources/EAT.

12 https://smallworldofwords.org.
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Table 3 Size of test datasets

Dataset Original Test Coverage (%)
MC 30 30 100
YP 130 47 36.15
RG 65 65 100
MTurk-287 287 76 26.48
WS-SIM 203 192 94.58
WS-REL 252 233 92.46
RW 2034 276 13.57
WS-ALL 353 328 92.92
MTurk-771 771 769 99.74
MEN 3000 1592 53.07
FAN 63,619 17,204 27.04

Table 4 Evaluation with Spearman’s correlation coefficient (a-8)

dataset Word2Vec GloVe FastText

WALE-1 WALE-2 WALE-1 WALE-2 WALE-1 WALE-2
MC .84 (.4-.6) .84 (.8-2) .80 (.2-.8) .83 (.8-2) 85 (.9-.1) 85(.9-1)
YP .77 (0-1) 77 (0-1) .77 (0-1) 77 (0-1) 77 (0-1) .77 (0-1)
RG .81 (.4-.6) .83 (.6-4) .84 (.2-.8) .86 (.8-2) .86 (.8-.2) 87 (.8-2)
MTurk-287 .76 (.6-4) 78 (.7-3) 75 (.2-.8) 75 (.7-3) 85 (1-0) 85(.9-1)
WS-SIM .78 (.4-.6) .80 (.7-3) 78 (.2-.8) 79 (.6-4) .84 (.8-2) 85(.8-.2)
WS-REL .62 ((7-.3) .64 (.8-2) .64 (.3-.7) .65 (.8-.2) 73 (9-.1) 74 (.9-.1)
RW .56 (.5-.5) S57(9-1) .52 (.2-.8) 52 (7-3) .60 (.9-.1) .60 (.9-.1)
WS-ALL 70 (.4-.6) 72 (.8-2) 70 (.2-.8) 72 (.7-3) 78 (.8-2) .79 (9-.1)
MTurk-771 .70 (.4-.6) 72 (.8-2) 73 (.2-.8) 75 (.8-.2) 75 (9-.1) 77 (.8-2)
MEN 78 (.5-.5) .78 (.8-.2) 76 (.3-7) 77 (.8-.2) .84 (1-0) 84 (.9-.1)
FAN .32 (.4-.6) 32 (.8-2) .30 (.2-.8) 30 (.7-.3) .36 (.7-.3) .36 (.8-.2)

aim to compare the pairs of words within a given group, each pair should be unique in the
score for that group. Table 3 shows the size of each test dataset.

5 Results

First, we evaluated WALE with Word2Vec, Glove, and FastText and with all test data-
sets. Tables 4, 5, 6, and 7 show the results returned by Spearman’s correlation coefficient,
Pearson’s correlation coefficient, RankDCG’ (only rank ordering), and RankDCG” (rank
ordering together with association strength), respectively. The values within round brackets
refer to the weighting factors of the parameters a and f# in WALE (Equation 2 and Equa-
tion 3), where « represents the factor for the corpus-derived embeddings and f is the factor
for the WordNet-derived embeddings.

Second, we conducted a group-based evaluation with FAN. Tables 8 and 9 show the
results with averaged RankDCG’ and averaged RankDCG”, respectively.
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Table 5 Evaluation with Pearson’s correlation coefficient (a-f)

dataset Word2Vec GloVe FastText

WALE-1 WALE-2 WALE-1 WALE-2 WALE-1 WALE-2
MC .83 (.4-.6) .83 (.8-2) .82 (.2-.8) .83 (.8-2) 84 (9-.1) 84 (9-1)
YP .84 (0-1) .84 (.2-.8) .84 (.1-.9) .84 (.2-.8) .84 (0-1) 85(.3-.7)
RG .81 (.3-7) .82 (.7-3) .83 (.2-.8) .84 (.7-3) .86 (.7-.3) .86 (.8-.2)
MTurk-287 72 (.5-.5) 72 (.8-2) 74 (3-7) 74 (.8-2) .80 (1-0) .80 (1-0)
WS-SIM .78 (.4-.6) .79 (.8-.2) 78 (.2-.8) 79 (.7-3) .84 (8-2) 84 (9-.1)
WS-REL .59 (.5-.5) .60 (.8-.2) .66 (.3-.7) .67 (.8-2) 72 (9-1) 72 (9-1)
RW .51 (.4-.6) 53 (.8-2) 49 (.2-.8) 49 ((7-3) S57(9-1) 58 (.9-.1)
WS-ALL .65 (.5-.5) .67 (.8-2) .69 (.2-.8) .70 (.8-.2) 75 (9-1) 75 (9-1)
MTurk-771 .69 (.4-.6) .70 (.7-3) 73 (.2-.8) 74 (.8-.2) 73 (.8-2) 75 (.8-2)
MEN 76 (.5-.5) .76 (.9-.1) 5 (.3-7) 76 (.8-.2) .82 (1-0) 82 (1-0)
FAN .34 (.4-.6) .34 (.8-2) 31 (.2-.8) 32 (.7-3) .38 (.7-.3) .38 (.8-.2)

Table 6 Evaluation with RankDCG’ (a-f)

dataset Word2Vec GloVe FastText

WALE-1 WALE-2 WALE-1 WALE-2 WALE-1 WALE-2
MC 97 (.3-7) 97 (.8-2) .95 (.2-.8) 95 (.8-2) 98 (.9-.1) 97 (9-.1)
YP 91 (.2-.8) 94 (.4-.6) 91 (0-1) 91 (0-1) 92 (.5-.5) 93 (.6-4)
RG 94 (.1-.9) 94 (.2-.8) 94 (.1-.9) 94 (.1-.9) 94 (.6-4) 95 (.4-.6)
MTurk-287 .90 (.2-.8) 91 (.3-.7) .90 (.6-.4) .90 (1-0) 90 (.7-.3) .90 (.8-.2)
WS-SIM 92 (.3-7) 92 (.8-2) 92 (.1-.9) .93 (.6-4) 93 (.6-.4) 93 (.6-4)
WS-REL .88 (.3-.7) 87 (.6-4) .89 (.3-.7) .89 (.8-.2) .89 (.6-4) 91 (.8-2)
RW .84 (.3-7) .83 (9-.1) .84 (.6-.4) .84 (1-0) .85 (1-0) .85 (1-0)
WS-ALL 91 (.3-7) 91 (.6-4) 92 (.2-.8) 92 (.6-4) 92 (.8-2) 93 (.8-.2)
MTurk-771 90 (.3-.7) 90 (.5-.5) .89 (.2-.8) 90 (.6-4) .87 (.6-4) 90 (.6-4)
MEN .88 (.4-.6) .88 (.7-3) .87 (.2-.8) .88 (.7-.3) 90 (.8-.2) 90 (.9-.1)
FAN 53 (.5-95) .53 (.8-2) .53 (.2-.8) .53 (.8-.2) .56 (.7-.3) .56 (9-.1)

Third, we evaluated eleven samples of different sizes extracted from FAN. In particu-
lar, we split FAN into five bins of about 3,500 pairs of words and, in turn, the first bin
into seven other bins of about 500 pairs of words. From these groupings, we employed
RankDCG to evaluate datasets of 503, 999, 1504, 2001, 2494, 3003, 3435, 6,882,
10,324, 13,759 and 17,204 pairs of words. To illustrate, Fig. 3 shows the results with
FastText and WALE-2 (0.9-0.1).

Finally, we conducted an experiment that looks much like the first, but with the origi-
nal 850 dimensions of X"V. To illustrate, Table 10 shows the results with FastText and
WALE-2. The scores that are higher or lower than the corresponding ones in Tables 4,
5, 6,and 7 (300 dimensions) have been marked in bold or italics, respectively.
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Table 7 Evaluation with RankDCG” (a-f)

dataset Word2Vec GloVe FastText
WALE-1 WALE-2 WALE-1 WALE-2 WALE-1 WALE-2

MC 99 (.3-.7) 98 (.4-.6) .98 (.2-.8) 98 (.7-3) 98 (.9-.1) 98 (.9-.1)
YP .96 (.2-.8) 98 (.4-.6) .93 (.2-.8) 92 (1-0) .96 (.5-.5) 98 (.6-4)
RG .96 (.1-.9) .96 (.2-.8) .96 (.1-.9) .96 (.5-.5) .96 (.6-.4) 97 (.4-.6)
MTurk-287 .92 (.2-.8) 93 (.3-.7) 93 (.6-4) 93 (1-0) 92 (.3-.7) .92 (.2-.8)
WS-SIM 95 (.1-.9) 95 (.1-.9) 95 (.1-.9) .96 (.6-4) 96 (.8-.2) 96 (9-.1)
WS-REL 91 (.3-7) 91 (7-3) 92 (.3-.7) 93 (.8-2) 92 (.6-4) 94 (.8-.2)
RW .88 (.3-.7) .86 (9-.1) .89 (.6-4) .88 (1-0) .87 (1-0) 87 (9-.1)
WS-ALL 94 (.1-.9) 94 (.6-4) 95 (.2-.8) 95 (.6-4) 95 (.8-2) 95 (.9-.1)
MTurk-771 .88 (.3-.7) .88 (.8-.2) .88 (.2-.8) .89 (.7-.3) .86 (.7-.3) .88 (.7-.3)
MEN .86 (.8-.2) .87 (.7-3) .85 (.2-.8) .86 (.7-.3) .89 (.6-4) 89 (.8-.2)
FAN .58 (.4-.6) .59 (.8-.2) .58 (.2-.8) .58 (.7-.3) .62 (.7-.3) .61 (.9-.1)

Table 8 Group-based evaluation of FAN with RankDCG’ (a-f)

dataset Word2Vec GloVe FastText

WALE-1 WALE-2 WALE-1 WALE-2 WALE-1 WALE-2

FAN (groups) .67 (4—6)  .68(8-2)  .69(3-7)  .69(9-1)  .69(1-0) .70 (.9-.1)

Table9 Group-based evaluation of FAN with RankDCG” (a-f)

dataset Word2Vec GloVe FastText

WALE-1 WALE-2 WALE-1 WALE-2 WALE-1 WALE-2

FAN (groups) .56 (.4-.6) .56 (.8-2) 58 (.4-.6) 58 (.9-.1) 59 (9-1) 59 (9-1)

6 Discussion
6.1 Word-embedding techniques and models to integrate word vectors

We can draw some conclusions from analyzing the data in Tables 4, 5, 6, and 7. First,
it is important to note that Spearman’s and Pearson’s correlation coefficients never out-
performed RankDCG’ and, in turn, RankDCG’ only outperformed RankDCG” with
MTurk-771 and MEN. This demonstrates that an evaluation conducted on the strength of
associations, and not only on the rank ordering of word pairs, contributes to revealing the
psychological plausibility of word-association models based on deep neural embeddings.
In other words, vector-space models show greater quality and coherence when evaluated
with a measure oriented to the associative strength.

Second, when analyzing the behaviour of WALE in relation to word-embedding tech-
niques (i.e. Word2Vec, GloVe, and FastText), we realize that Spearman’s and Pearson’s
correlation coefficients return similar results, where the best option with all test datasets

@ Springer



Measuring associational thinking through word embeddings

- ‘ I ! LI ! ! ! 1 L | ' I
L mee e
0.6 - L L MR S 1
'.. RankDCG (rank ordering + associative strength)
. —. ]
0.55 1
RankDCG (rank ordering)
0.5+ ]
0.45 + 1
04 o son' elation |
X men Pearson's correlation
ox ® Y IETTTTTrrRRS @ ---ccccceennnn Y
.” ,,,,,,,,,,,,,,, x ,,,,,,,,,,,,,, “ AAAAAAAAAAAAAAA :
. ............... . e® - x
0.35 | Spearman's correlation |
0 3 L Il " 1 " L Il " 1 P! " 1
: - 4 4 <
0 2500 5000 7500 10 1.25x10" 1,5x%10

Fig. 3 Evaluation of different-sized samples of FAN with FastText and WALE-2 (0.9-0.1)

Table 10 Evaluation with
FastText and WALE-2 (a-§):
850-dimension WNet2Vec

dataset Spearman  Pearson RankDCG’  RankDCG”
MC 83(.9-1) 84(9-1) 97(9-1) .98 (.6-4)
YP 75(1-9)  84(2-8) .94 (4-.6) .98 (.4-.6)
RG .86 (.7-3) .86(.8-2) .95(4-.6) .97 (4-.6)
MTurk-287  .85(.8-2) .80(9-1) .94 (.5-.5) 94 (.7-.3)
WS-SIM 85(.8-2) .84(9-1) .94(8-2) .96 (.8-.2)
WS-REL 73(.9-1)  T72(9-1) 91(8-2) 94 (8-2)
RW .60 (9-.1) .57(9-1) .85(1-0) .87 (9-.1)
WS-ALL 79 (8-2)  75(9-1) .93(8-2) 96 (.8-.2)
MTurk-771 77 (9-1) .75(8-2) .90 (.6-4) .88 (.8-.2)
MEN 84 (9-1) .82(1-0) .90 (.8-2) .89 (.8-2)
FAN 36 (.8-2) .38(8-2) .56(9-1) .61 (9-.1)
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is FastText. However, in the case of Word2Vec and GloVe, there is no clear evidence
to prove the superiority of one technique over the other. Irrespective of the technique,
WALE-1 never outperforms WALE-2, whereas the latter outperforms the former in 28.79%
of the ratings with Spearman’s correlation and 25.76% with Pearson’s correlation. On the
other hand, most of the test datasets provide good results with FastText when evaluated
with RankDCG’ and RankDCG” (i.e. 81.82% and 63.64% of the ratings, respectively),
where Word2Vec and GloVe are again much less significant. WALE-1 rarely outperforms
WALE-2 (i.e. 4.55% of the ratings with RankDCG’ and 7.58% with RankDCG”), but the
latter only outperforms the former in 15.16% of the ratings with RankDCG’ and 16.67%
with RankDCG”. In other words, the choice of the WALE model is a determining fac-
tor with Spearman’s and Pearson’s correlation coefficients, but it plays a minor role with
RankDCG.

Third, as the parameters of WALE serve to determine the influence of a given type of
language model, we notice that each evaluation measure highlights different properties of
the vector-space model generated by each technique. For example, in Word2Vec, Spear-
man’s and Pearson’s correlation coefficients emphasize the dominant influence of the cor-
pus with WALE-2 (i.e. 90.91% of the ratings with each measure) and that of the semantic
network with WALE-1 (i.e. 63.64% with each measure). RankDCG’ and RankDCG” also
bring to light the influence of the semantic network with WALE-1 (i.e. 90.91% of the rat-
ings with each measure) and that of the corpus with WALE-2 (i.e. 63.64% and 54.55% of
the ratings, respectively). In GloVe, all measures give more importance to the semantic
network with WALE-1 (i.e. 100% of the ratings with Spearman’s and Pearson’s correla-
tion coefficients and 81.82% with RankDCG) and to the corpus with WALE-2 (i.e. 90.91%
of the ratings with Spearman’s and Pearson’s correlation coefficients and RankDCG”,
and 81.82% with RankDCG’). In FastText, the influence of the corpus is greater both in
WALE-1 and WALE-2, being more dominant with Spearman’s and Pearson’s correlation
coefficients and RankDCG’ (i.e. 90.91% of the ratings) than with RankDCG” (i.e. 81.82%).
Therefore, our experiments showed that Word2Vec and GloVe expose the dominant influ-
ence of the semantic network through WALE-1 and that of the corpus through WALE-2,
whereas the corpus dominates in both WALE models with FastText. This finding is in line
with the assumption that internal language models encode mental representations differ-
ently compared to external language models. However, unlike previous studies (De Deyne
et al. 2015, 2016), we also demonstrate that internal language models do not always per-
form better than external language models, even with word-similarity datasets.

Finally, the benefit of integrating word-embedding matrices is also evidenced when we
take as the baseline the results yielded by a single matrix. On the one hand, the standalone
corpus-based model (i.e. 1 and O in a and f, respectively) only outperforms hybrid models
in 3.03% of the ratings with Pearson’s correlation and RankDCG’ and 9.09% with Spear-
man’s correlation. It is worthwhile to mention that all these cases only occur when evaluat-
ing YP. On the other hand, the standalone WordNet-based model (i.e. 0 and 1 in « and g,
respectively) only outperforms hybrid models in 3.03% of the ratings with Spearman’s cor-
relation and 6.06% with the remaining measures. In the case of Spearman’s and Pearson’s
correlation coefficients, this occurs when evaluating MTurk-287 and MEN with WALE-1
in FastText. In the case of RankDCG, however, this occurs when evaluating MTurk-287
and RW with WALE-2 in GloVe, as well as the latter with WALE-1 in FastText. Without
a doubt, our experiments demonstrate that hybrid language models tend to increase perfor-
mance when compared against the baseline, as demonstrated in previous studies. However,
our research relies on linear compositional functions that allow assessing the relative influ-
ence of a given language model in relation to another.
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6.2 Group-based evaluation

In group-based evaluation, where RankDCG’ always outperforms RankDCG”, the best
results are obtained again with FastText and WALE-2, and the worst with Word2Vec
and WALE-1 (Tables 8 and 9). A comparison with the results derived from the evalua-
tion conducted on the whole list of word pairs (Tables 4, 5, 6, and 7) showed that scores
are significantly higher in group-based evaluation with RankDCG’ but slightly better in
the evaluation of the whole test dataset with RankDCG”.

6.3 Size of datasets

As shown in Fig. 3, if we focus on small-sized datasets (i.e. the first seven dots in
each line of the graph, which correspond to datasets containing less than 3500 pairs of
words), it can be noticed that Spearman’s correlation and RankDCG” show a smaller
amount of variability than Pearson’s correlation and RankDCG’, where performance
degrades progressively in the latter. On the other hand, if we focus on medium-sized
datasets (i.e. the last five dots in each line of the graph, which correspond to the datasets
containing over 3500 pairs of words), the pattern of change is very similar for the four
measures. In either of the two cases, RankDCG” provides the highest scores.

6.4 Reduction of dimensionality

The reduction of dimensionality in WNet2Vec did not virtually affect the performance
of any model when evaluated by any of the measures with any of the test datasets. For
example, in the case of FastText with WALE-2 (Table 10), the 850-dimension word-
embedding matrix leads to an improvement and degradation of performance in 11.36%
of the ratings in each case, remaining unchanged in 77.28%.

7 Conclusion

During the past few decades, many studies have been published on the topic of word-
association assessment, where a variety of techniques have been used from fields such as
psychology, linguistics, and NLP. In contrast to most previous studies, this article is not
aimed at presenting a new measure of word association (e.g. word relatedness and simi-
larity) but at exploring different ways to integrate existing embeddings to determine the
semantic or non-semantic associative strength between words so that correlation with
human judgements can be maximized. To this end, we took into consideration several
factors, such as the word-embedding technique (i.e. Word2Vec, GloVe, and FastText),
the model for the integration of word-embedding matrices (i.e. not only whether to pro-
ject them into a single or double vector space but also whether to give greater weight
to an external or internal language model), the evaluation measure (i.e. Spearman’s and
Pearson’s correlation coefficients and RankDCG), and the dataset size, among others.
Several conclusions can be drawn from this research:
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FastText has proven to be the best word-embedding technique, probably because
embeddings were enriched with sub-word information. However, there is no clear
evidence to determine the second-best choice, i.e. Word2Vec or GloVe, whose embed-
dings were constructed directly from words.

The integration of word-embedding matrices into a double vector space (i.e. WALE-
2) always provides optimal results when traditional measures such as Spearman’s and
Pearson’s correlation coefficients are employed. In the case of RankDCG’ and Rank-
DCG”, the WALE model is not a critical factor, although WALE-2 is also very likely
to provide a good result.

The most effective way to integrate external and internal language models (i.e. cor-
pus- and network-based embeddings) through the « and § parameters in WALE is
highly conditioned by not only the word-embedding technique but also the evaluation
measure. Indeed, our experiments revealed that, regardless of the measure, there is a
dominant influence of the semantic network in WALE-1 and the corpus in WALE-2
with Word2Vec and GloVe, but the corpus dominates in both WALE models with
FastText.

RankDCG’ usually outperforms Spearman’s and Pearson’s correlation coefficients,
and, in turn, RankDCG” usually outperforms RankDCG’. This is true when the whole
test dataset is evaluated, regardless of whether or not associative words are semanti-
cally related. However, RankDCG’ outperforms RankDCG” in group-based evaluation.
Moreover, group-based evaluation gives better results than the evaluation of the whole
test dataset with RankDCG’, where RankDCG” is in the opposite case.

In the light of the previous findings, we can conclude that reliable results can be pro-
vided with FastText, WALE-2 and a weight ranging from 0.8 to 1 on the corpus-based
embeddings, showing a more pronounced tendency when evaluated with Spearman’s
and Pearson’s correlation coefficients rather than with RankDCG.

RankDCG” is the least sensitive measure to the size of test datasets, mainly when the
size is over 2000 pairs of words.

The reduction of dimensionality in the network-based embedding matrix (e.g. WNet-
2Vec) did not virtually affect the performance of any model.

Therefore, we demonstrated that:

A mathematically simple technique, i.e. the weighted average of the cosine-similarity
coefficients derived from independent word embeddings in a double vector-space model,
can serve to provide sufficiently successful results from off-the-shelf word embeddings,
The weak-knowledge approach based on corpora plays a more critical role than the
strong-knowledge approach based on semantic networks in a hybrid model such as
WALE, and

A measure such as RankDCG” can help researchers discover word-association models
that contribute to constructing semantic representations that are more cognitively plau-
sible, as the evaluation is conducted on both rank ordering and the associative strength
of word pairs.

Future work will focus on applying our technique to two distinct scenarios: neuropsy-
chology and topic categorization. On the one hand, neuropsychological tests such as the
Hayling Sentence Completion Test, where patients complete sentences with the first word
that comes to their mind, are liable to bias when examiners assess stimulus-response
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associations. Our research can contribute to facilitating the automated scoring of responses.
On the other hand, we intend to develop an unsupervised topic-categorization model that
relies on the semantic similarity between user-generated text data and a set of pre-defined
categories. In this context, our research can contribute to enhancing the embedding-derived
meaning representation of both the messages and the topics.
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