
FIRST DRAFT 

 

The implementation of the CLS Constructor in ARTEMIS 

 

Carlos Periñán-Pascual 

Francisco Arcas-Túnez 

 

Abstract 

Most natural language processing researchers highlight the benefits of 

interlingua-based systems in multilingual settings. In this scenario, Role and 

Reference Grammar can contribute to build a cross-language semantic 

representation of the input text in terms of its logical structure. Our goal is 

to describe the various stages in the development of one of the first 

computational systems which employs a lexico-conceptual knowledge base 

to generate the logical structure of sentences. Our approach actually 

involved some changes in the standard functional model in order to convert 

the logical structure into an ontology-grounded representation of sentential 

meaning. In fact, we demonstrate that constructional schemata should 

become the cornerstone of the syntax-semantics interface in this 

computerized model of Role and Reference Grammar. 

 

 



1. Introduction 

 

In computational linguistics, lexical-semantic research is influenced by two 

mainstreams: syntax-driven and ontology-driven semantics (Nirenburg & 

Levin 1992). As has been the case in many lexicalist theories, syntax-driven 

semantics focuses on those meaning components which can predict the 

syntactic behavior of words. On the other hand, ontology-driven semantics 

tries to infer text meaning from some language-independent model of a 

world which is mapped to the lexicon of a given language. Although a 

single approach is not sufficiently effective, most of the knowledge-based 

natural language processing (NLP) systems are usually confined to one of 

these two models. 

 The goal of this chapter is to describe the design and development of 

an NLP system whose lexical-semantic model is not only oriented to the 

syntax of a given language but is also linked to a language-independent 

ontology-grounded representation of text meaning. As a result, we have 

implemented ARTEMIS (Automatically Representing TExt Meaning via an 

Interlingua-based System), a proof-of-concept prototype which is based on 

Role and Reference Grammar (RRG) as its linguistic model (Van Valin & 

LaPolla 1997; Van Valin 2005) and which exploits FunGramKB as its 

knowledge base (Periñán-Pascual & Arcas-Túnez 2004, 2005, 2007, 2008, 

2010a, 2010b; Periñán-Pascual & Mairal-Usón 2009, 2010, 2011; Mairal-

Usón & Periñán-Pascual 2009). We also intend to demonstrate that 



projectionist and constructivist approaches to sentential meaning can be 

conflated in a computer-tractable model of RRG. 

 This chapter is organised as follows: sections 2 and 3 sketch out the 

FunGramKB and RRG models respectively, where in the latter we also 

introduce our major changes to the standard functional model; and section 4 

analyses the different processing stages involved in the CLS Constructor, 

which outputs a cross-language representation of the input text. 

 

 

2. FunGramKB 

 

ARTEMIS is a knowledge-based system, since it operates with a repository 

of knowledge (in our case, lexical, constructional and conceptual 

knowledge) which is clearly separated from the rest of the system and with 

an inference engine whose role is to apply relevant knowledge in problem 

resolution.1 More particularly, ARTEMIS is provided with FunGramKB, a 

multipurpose lexico-conceptual knowledge base to be implemented in 

natural language understanding applications.2 On the one hand, 

FunGramKB is multipurpose in the sense that it is both multifunctional and 

multilingual. Thus, FunGramKB has been designed to be potentially reused 

                                                           
1 In the case of computational linguistics, one of these problems is word sense 
disambiguation. 
2 We use the name “FunGramKB Suite” to refer to our knowledge-engineering tool 
(www.fungramkb.com) and “FunGramKB” to the resulting knowledge base. FunGramKB 
Suite was developed in C# using the ASP.NET platform and a MySQL database. 



in many NLP tasks (e.g. information retrieval and extraction, machine 

translation, dialogue-based systems, etc) and with many natural languages.3 

On the other hand, our knowledge base comprises three major knowledge 

levels, consisting of several independent but interrelated modules: 

a. Lexical level: 

a.1. The Lexicon stores morphosyntactic and collocational information 

about lexical units. The FunGramKB lexical model is not a literal 

implementation of the RRG lexicon, although some of the major linguistic 

assumptions of RRG are still preserved, e.g. the logical structure. 

a.2. The Morphicon helps our system to handle cases of inflectional 

morphology. 

b. Grammatical level: 

b.1. The Grammaticon stores the constructional schemata which help RRG 

to construct the syntax-semantics linking algorithm. More particularly, the 

Grammaticon is composed of several Constructicon modules that are 

inspired in the four levels of the Lexical Constructional Model (LCM) (Ruiz 

de Mendoza & Mairal-Usón 2008; Mairal-Usón & Ruiz de Mendoza 2009), 

i.e. argumental, implicational, illocutionary and discursive. 

c. Conceptual level: 

c.1. The Ontology is presented as a hierarchical catalogue of the concepts 

that a person has in mind, so here is where semantic knowledge is stored in 

                                                           
3 English and Spanish are fully supported in the current version of FunGramKB Suite, 
although we have just begun to work with other languages, such as German, French, Italian, 
Bulgarian and Catalan. 



the form of meaning postulates. The Ontology consists of a general-purpose 

module (i.e. Core Ontology) and several domain-specific terminological 

modules (i.e. Satellite Ontologies). 

c.2. The Cognicon stores procedural knowledge by means of scripts, i.e. 

schemata in which a sequence of stereotypical actions is organised on the 

basis of temporal continuity, and more particularly on Allen's temporal 

model (Allen 1983; Allen & Ferguson 1994). 

c.3. The Onomasticon stores information about instances of entities and 

events, such as Bill Gates or 9/11. This module stores two different types of 

schemata (i.e. snapshots and stories), since instances can be portrayed 

synchronically or diachronically. 

In the FunGramKB architecture, every lexical or grammatical 

module is language-dependent, whereas every conceptual module is shared 

by all languages. In other words, linguists must develop one Lexicon, one 

Morphicon and one Grammaticon for English, one Lexicon, one Morphicon 

and one Grammaticon for Spanish and so on, but knowledge engineers build 

just one Ontology, one Cognicon and one Onomasticon to process any 

language input conceptually. In this scenario, FunGramKB adopts a 

conceptualist approach, since the Ontology becomes the pivotal module for 

the whole architecture. 

 FunGramKB is the product resulting from a knowledge-engineering 

project, where our major concern has always been its application in 

linguistically-aware and psychologically-plausible NLP systems. It is for 



this reason that the linguistic level in our knowledge base is grounded on the 

RRG theory, briefly described in the following section. 

 

 

3. Role and Reference Grammar 

 

3.1 The standard model 

 

RRG is one of the most relevant functional models of language in current 

linguistics. RRG was not actually designed for NLP, but this linguistic 

theory presents three characteristics which make it a suitable model for 

NLP: 

a. RRG is a model where morphosyntactic structures and grammatical rules 

are explained in relation to their semantic and communicative functions. 

b. RRG is a monostratal theory, where the syntactic and semantic 

components are directly connected through a “linking algorithm”. 

c. RRG is a model which owns typological adequacy. 

The features (a-c) are essential for a computational model which 

aims to provide the capability of natural language understanding. Firstly, a 

functional view of language allows us to capture syntactic-semantic 

generalizations which are fundamental to explain the semantic motivation of 

grammatical phenomena. Secondly, the system is more effectively designed 

if an algorithm is able to account for both the comprehension and the 



production of linguistic expressions. Thirdly, typological adequacy becomes 

an added value when working in a multilingual environment. 

RRG is concerned with two fundamental aspects of language 

description: the relational structure, which deals with relations between a 

predicate and its argument(s), and the non-relational structure, which 

accounts for the hierarchical organization of phrases, clauses and sentences. 

Consequently, the notions of “logical structure” and “layered structure of 

the clause” (LSC) are fundamental in the analysis of language. 

On the one hand, RRG rejects the standard formats for representing 

clause structure (e.g. grammatical relations), as can be seen in Figure 1 (Van 

Valin & LaPolla 1997: 38).4 

 

Figure 1. RRG layered structure of the clause. 

 

This hierarchical structure is both semantically and pragmatically motivated, 

                                                           
4 Abbreviations: LDP ‘left-detached position’, RDP ‘right-detached position’, PrCS 
‘precore slot’, PoCS ‘postcore slot’, ARG ‘argument’, and PRED ‘predicate’. 



and not only syntactically based: whereas constituents such as the nucleus, 

core, periphery and clause are semantically motivated, the detached phrases 

and the extra-core slots seem to be pragmatically motivated (Van Valin 

2005: 8). The LSC is universal; however, cross-linguistic variations are 

captured by means of the syntactic templates of each language, so syntactic 

representations are not built on phrase-structure rules. 

 On the other hand, the semantic representation of a sentence 

originates from the logical structure assigned to verbs and other predicates 

in the lexicon on the basis of its distribution in a typology of classes (i.e. 

state, activity, achievement, semelfactive, accomplishment, active 

accomplishment, and their corresponding causative forms). To illustrate, (1-

3) show that each verb class is represented formally by means of a different 

logical structure, being composed of elements of a universal semantic 

metalanguage which consists of constants, variables and semantic 

operators.5 

(1) see: see' (x,y)    [state] 

(2) run: do' (x, [run' (x)])  [activity] 

(3) receive: BECOME have' (x,y) [accomplishment] 

Operators such as aspect, modality, tense or illocutionary force, among 

many others, are also represented in the logical structure of sentences. Thus, 

the sentence “Peter broke the glass”, for example, is assigned the following 

                                                           
5 The verb class adscription system is based on Vendler’s (1967) Aktionsart distinctions, 
and the decompositional system is a variant of the one proposed by Dowty (1979). 



semantic representation: 

(4) <IF
DEC

 <TNS
PAST

 <ASP
PERF <[do' (Peter, Ø)] CAUSE 

[BECOME broken' (glass)]>>>> 

In this model, the syntax-semantics linkage is divided into five steps, as 

shown in Figure 2:6 

a. Determine the LSC. 

b. Identify the macroroles (i.e. Actor and Undergoer)7 of the core arguments 

in terms of the privileged syntactic argument selection hierarchy (Van Valin 

2005: 100). 

c. Retrieve from the lexicon the logical structure of the predicate in the 

nucleus of the clause. 

d. Assign macroroles to the arguments in the logical structure according to 

the Actor-Undergoer hierarchy (Van Valin 2005: 126). 

e. On the basis of their macroroles, link the arguments determined in step (a) 

with the arguments found in step (c) until all core arguments are linked. 

                                                           
6 The linkage algorithm has been hugely simplified and adapted from Van Valin (2005: 
149-150). 
7 The macroroles Actor and Undergoer can be regarded as the “logical subject” and the 
“logical object” respectively. 



 

Figure 2. RRG syntax-semantics linkage.8 

 

Therefore, the macroroles Actor and Undergoer become a critical 

component in the syntax-semantics linkage. On the whole, the lexicon is the 

key module in the RRG framework, since the semantic representation of a 

sentence is built on the logical structure of the predicate. This is the reason 

why RRG is viewed as a projectionist model of language. 

                                                           
8 In the latest version of the RRG model, the label NP is now replaced by RP (Reference 
Phrase), which, unlike NP, is a non-endocentric construct: “The nucleus of an RP is neither 
restricted to nominals, nor is it restricted to lexical heads” (Van Valin 2009: 708). 



 

3.2 The computational model 

 

Up to now, there have only been two serious attempts to implement some of 

the aspects of the RRG theory computationally. For instance, Guest (2009) 

developed a parser which is able to output the LSC of an English sentence. 

However, a more challenging research programme can be found in 

UniArab—Universal Arabic Machine Translator (Salem, Hensman & Nolan 

2008), an interlingua-based machine translation prototype which is able to 

provide a working translation of Modern Standard Arabic to English. One of 

the primary strengths of UniArab is to build the logical structure of an 

Arabic sentence, but the project does not manage to provide a robust 

approach to the semantics of lexical units. 

 ARTEMIS comes into the scene as one of the first systems which 

employs a robust knowledge base to generate a full-fledged logical structure 

to be used in NLP applications requiring language comprehension 

capabilities. This new approach led us to make some changes to the RRG 

standard model, since an enhanced representation of the logical structure 

was required, as explained in the following section. 

 

3.2.1 The Construction category 

Undoubtedly, constructional meaning improves the descriptive power of a 

semantic theory. Van Valin (2005: 3) recognised that “a theory of clause 



structure should capture all of the universal features of clauses”, so we 

integrated the construction as a universal category into the LSC. Therefore, 

the clause is configured now as one or more argumental constructions (L1-

CONSTRUCTION)9 which are recursively arranged, as shown in Figure 3. 

 

Figure 3. Enhanced model of the LSC. 

 

It is clear that compositionality is one of the most distinctive features of 

sentential processing, but this is such an overused term that we want to 

focus on some nuances that will help us to provide a clear definition of 

“construction”. Thus, following Pelletier’s categorization (2012), 

                                                           
9 In fact, this type of construction belongs to the Level 1 of the LCM, i.e. the argumental 
layer which accounts for the core grammatical properties of lexical items. 



FunGramKB adopts a compositional wholist model of computational 

semantics, which integrates the “functional compositionality”—as defined 

in (5)—of sentential semantics with the “ontological holism”—as defined in 

(6)—of constructional semantics.10 

(5) The µ of a whole is a function of the µ’s of its parts and the 

ways those parts are combined (Pelletier 2012: 153).11 

(6) Some properties can only be attributed to entities that are not 

individuals (Pelletier 2012: 156). 

In other words, functional compositionality allows a complex whole (e.g. 

the sentence) to have things (e.g. sentential meaning) which are not present 

in the parts (e.g. the words), providing that the function introduces this same 

material every time it is faced with the same parts and manner of 

combination (e.g. the construction). On the other hand, ontological holism 

allows a complex whole (e.g. the construction) to have properties (e.g. 

constructional meaning) which are not properties of any part (e.g. the 

words). In accordance with these complementary distinctions resulting from 

the view of compositionality and holism, our definition of “construction” is 

presented as follows: 

(7) A construction is a pairing of form and meaning, serving as a 

building block in the compositionality of sentential 

                                                           
10 Unlike the computational meaning with which the word “ontology” is used throughout 
this chapter, the term “ontological holism” should be understood in its philosophical sense. 
11 µ symbolizes the “meaning function”, i.e. X = µ(A), where A is some syntactic item and 
X is the meaning of A. 



semantics, whose meaning cannot be fully derived from the 

sum of the lexical meanings of the individual constructs 

taking part in the utterance.12 

Thus, from the FunGramKB approach, the sentence “John pounded the nail 

flat into the wall” consists of three argumental constructions: Kernel-2, 

Transitive Resultative and Caused-Motion.13 

(8) [[[John pounded the nail]Kernel-2 flat]Transitive-Resultative into the 

wall]Caused-Motion 

The remaining components can only be perceived as constructs, whose 

meanings are directly derived from their meaning postulates. In terms of the 

FunGramKB model, lexical constructs get their meaning from the meaning 

postulates stored in the Ontology, whereas constructional meaning is shaped 

by the Core Grammar in the Lexicon and the constructional schemata in the 

Grammaticon. 

The FunGramKB constructional schema, which serves as a machine-

tractable representation of the construction, is defined in terms of constraints 

which license functional compositionality with other constructs or 

constructions. To illustrate, Figure 4 presents the attribute-value matrix 

(AVM) of the Caused-Motion Construction. 

                                                           
12 Derivative morphemes are not considered to be linguistic objects in the current version of 
FunGramKB, so the minimal constructs in the processing of linguistic realizations take the 
form of lexical units. 
13 Kernel Constructions correspond to basic intransitive (type 1), monotransitive (type 2) 
and ditransitive (type 3) constructions, where zero-argument verbs raise a Kernel-0 
Construction. 



 

Figure 4. The constructional schema of the Caused-Motion Construction.14 

 

The constructional schema contains the properties common to all the 

instances of a given construction. Therefore, the Grammaticon stores types 

of constructions to which words in the Lexicon are linked. Up to now, these 

types of constructions are arranged in a flat organization, instead of relating 

them in terms of an inheritance hierarchy.15 The properties which are 

defined in constructional schemata are rather independent from language so 

as to determine cross-linguistic generalizations. Indeed, phrase realizations 

of variables (e.g. NP, PP etc) and the typical prepositions heading 

prepositional phrases are the only two attributes in the AVM which are 

language-dependent (Figure 5). 

                                                           
14 Abbreviations: L1-constr ‘L1-constructional schema’ and Prefer ‘Selectional preference’. 
15 For example, Goldberg (1995) suggested how to capture generalizations across 
constructions by means of an inheritance hierarchy of constructions, where the lower levels 
are specializations in form and function of the highest level. Whether this inheritance 
network is monotonic or non-monotonic is still a debatable issue. 



 

Figure 5. Attributes of the constructional schema. 

 

It is important to bear in mind that the universality of the category 

construction does not involve the claim that the whole inventory of 

constructional schemata should be shared by any language. In fact, a given 

construction can be licensed in a particular language if and only if there is at 

least one entry in the Lexicon which contains a pointer to that 

construction.16 As a result, there was a need to create an L1-Constructicon 

module, whose interface is shown in Figure 6, for every language in 

FunGramKB Suite. 

                                                           
16 As shown in Figure 5, construction-type codes in the lexical entry serve as pointers to 
constructional schemata. 



 

Figure 6. The L1-Constructicon interface. 

 

Although “(…) there has been a disagreement in the CxG literature about 

whether or not ‘constructions must have meaning’” (Sag 2012: 87), 

FunGramKB constructions are essentially meaning-bearing devices, where 

their semantic burden lies in the Aktionsart (i.e. aspectual meaning) and/or 

the COREL scheme (i.e. conceptual meaning).17 Indeed, we can infer from 

                                                           
17 COREL (COnceptual Representation Language) is an interface language to formalize 
conceptual knowledge in FunGramKB. Periñán-Pascual and Mairal-Usón (2010) described 
the grammar of this notational language. 



the definition (7) that the raison d'être of a construction is its semantic 

contribution to that part of the meaning of the sentence which cannot be 

derived from the lexical units. 

In short, FunGramKB adopts a hybrid approach to constructional 

meaning, i.e. halfway between projectionism (e.g. Jackendoff 1990; 

Pustejovsly 1991; Rappaport Hovav & Levin 1998) and constructivism (e.g. 

Goldberg 1995; Croft 2001). On the one hand, our language model is much 

closer to projectionism in terms of how linguistic realizations of 

constructions are related to their semantic descriptions; in fact, FunGramKB 

shows a clear-cut separation between the linguistic modules, i.e. the Lexicon 

and the Grammaticon, where the projection from syntax to semantics goes 

through the pointers in the lexical entries. On the other hand, our language 

model is much closer to constructivism in terms of how lexical units and 

constructions jointly affect sentential meaning. 

 

3.2.2 The conceptual logical structure 

Another key difference from the standard RRG model is the format of the 

logical structure, which now becomes a real cross-language representation 

to be used in multilingual NLP systems with FunGramKB as their 

knowledge base. As a result, there was a shift of the logical structure into 

the conceptual logical structure (CLS), which involved a number of changes 

as illustrated in (9). 

(9) Peter broke the glass. 



Logical structure: 

<IF
DEC

 <TNS
PAST

 <ASP
PERF <[do' (Peter, Ø)] CAUSE 

[BECOME broken' (glass)]>>>> 

  CLS: 

<IF
DEC

 <TNS
PAST

 <ASP
PERF <CONSTR-L1

KER2 

<[AKT
CACC [+BREAK_00 (%PETER_00-Theme, 

$GLASS_00-Referent)]]>>>> 

Firstly, the instantiation of variables takes the form not of predicates but of 

ontological concepts (e.g. the terminal concept $GLASS_00 instead of the 

predicate glass). Secondly, every instantiated concept is assigned a thematic 

role from the thematic frame of the event to which the verb is linked (e.g. 

%PETER_00 is the Theme and $GLASS_00 is the Referent in the cognitive 

situation described by the event +BREAK_00). In contrast to RRG, 

thematic roles do play a paramount role in the CLS. Indeed, ARTEMIS is 

only able to perform the lexico-conceptual linkage once the constituents in 

the parse tree are tagged with the FunGramKB thematic roles. The NLP 

system can subsequently reach a deeper level of comprehension by deriving 

the extended COREL scheme (10) from the CLS in (9). 

(10) +(e1: +DAMAGE_00 (x1: %PETER_00)Theme (x2: 

$GLASS_00)Referent (f1: (e2: +SPLIT_00 (x1)Theme 

(x2)Referent))Result) 

  ‘Peter damaged the glass into pieces’ 

We intend to enrich the extended COREL scheme not only with the 



knowledge from the meaning postulates in the Ontology but also with that 

from the scripts in the Cognicon and from the snapshots and stories in the 

Onomasticon.18 Thirdly, every argumental construction is embodied in a 

constructional operator (i.e. CONSTR-L1) whose scope is the core of the 

clause. Finally, the Aktionsart operator (i.e. AKT) together with an 

“argument pattern”19 headed by the event—as shown in (11)—replaces the 

semantic skeleton originated by the RRG decompositional system. 

(11) [event (argument-role, argument-role…)] 

These two new operators in the logical structure (i.e. CONSTR-L1 and 

AKT) play a joint role in shaping sentential meaning, since a given 

argumental construction not only contributes to the enrichment of the 

COREL scheme but also helps to determine the Aktionsart. In particular, 

and due to factors such as the linearity of processing, the concatenation of 

grammatical constituents and the functional compositionality described in 

the previous section, the right-most argumental construction which the 

processor finds in the input is the one which directly impacts on the 

aspectual value of the verb, as shown in (12-14).20 

(12) <IF
DECL <Tense

PAST <CONSTR-L1
KER2 <AKT

ACT [$POU0D_02 

(%JOH0_00-Agent, +0AIL_01-Goal)]>>>> 

                                                           
18 For example, a snapshot containing personal knowledge about Peter could reveal that he 
suffers from haemophilia, adding a potential risk to the state of affairs portrayed by the 
sentence. 
19 Despite its name, an argument pattern can also introduce a further nucleus in the case of 
nuclear cosubordination, just as occurs with the Resultative Construction. 
20 It should be noted that the right-most construction in the input is represented by the left-
most CONSTR-L1 operator in the bracketed representation of the CLS. 



  ‘John pounded the nail’ 

(13) <IF
DECL <Tense

PAST <CONSTR-L1
RESU <CONSTR-L1

KER2 

<AKT
CACC [$POU0D_02 (%JOH0_00-Agent, +0AIL_01-

Goal, +FLAT_00-Result)]>>>>> 

‘John pounded the nail flat’ 

(14) <IF
DECL <Tense

PAST <CONSTR-L1
CMOT <CONSTR-L1

KER2 

<AKT
CACC [$POU0D_02 (%JOH0_00-Agent, +0AIL_01-

Goal, +WALL_00-Goal)]>>>>> 

  ‘John pounded the nail into the wall’ 

As occurs in (12), Kernel Constructions are the only type of constructions 

which are not formalised in the Constructicon, but are modeled within the 

lexical entry of the verb. On the other hand, in (13) the L1-Constructicon 

raises the Transitive-Resultative Construction (RESU) which makes the 

state of affairs become a causative accomplishment (CACC), whereas in 

(14) the Caused-Motion Construction (CMOT) similarly brings forward a 

causative accomplishment. As shown in (13-14), constructional meaning 

ultimately determines aspectual meaning.21 The following section describes 

how the whole CLS is automatically built. 

 

 

4. The CLS Constructor in ARTEMIS 

                                                           
21 Periñán-Pascual (2013) describes the interface between the Lexicon and the L1-
Constructicon in sentential processing. 



 

To avoid being distracted from implementation details, Figure 7 shows the 

UML diagram22 which serves to describe the logical activity which models 

the behaviour of the CLS Constructor. 

 

Figure 7. The ARTEMIS process (abridged version). 

 

In the following sections, we describe the main stages involved in the 

syntax-semantics linking algorithm with FunGramKB. To illustrate, we will 

use as an example the sentence (15), whose CLS is (16). 

(15) John pounded the nail flat into the wall. 

(16) <IF
DECL <Tense

PAST <CONSTR-L1
CMOT <CONSTR-L1

RESU <CONSTR-

                                                           
22 UML (Unified Modeling Language) is “a general-purpose visual modeling language that 
is used to specify, visualize, construct, and document the artifacts of a software system” 
(Rumbaugh, Jacobson & Booch 1999: 3). 



L1
KER2 <AKT

CACC 
[$POU0D_02 (%JOH0_00-Agent, 

+0AIL_01-Goal, +FLAT_00-Result, +WALL_00-

Goal)]>>>>>> 

 

4.1. Pre-processing 

 

First of all, the input is split into sentences, and then into word tokens. In 

other words, this task consists in segmenting the input into basic units of 

analysis. In the following task, the word tokens are lemmatised. Finally, 

every token is labeled with a unique part-of-speech tag. We employed the 

OpenNLP library (Baldridge, Morton & Bierner 2001) for tokenization and 

part-of-speech tagging, and the LemmaSharp library (Jursic, Mozetic, 

Erjavec & Lavrac 2010) for lemmatization. Following the object-oriented 

paradigm, we represent feature-based structures as AVMs which are 

computationally implemented in the form of user-defined objects in the 

programming language C#.23 For example, this multi-task stage outputs the 

AVMs shown in Figure 8. 

                                                           
23 Together with C++ and Java, C# (C-Sharp) is one of the most popular general-purpose 
object-oriented programming languages in modern computing. 



 

Figure 8. AVMs of word tokens. 

 

It is worth noting that part-of-speech tagging involves predicate 

conceptualization, bringing in the problem of word-sense disambiguation. 

Since lexical information in FunGramKB is linked to the senses of words 

(i.e. sense-oriented approach), a word-sense disambiguator should firstly tag 

the lemmas with a single conceptual label from the Ontology, or, in the case 

of proper nouns, from the Onomasticon. This disambiguator is still work in 

progress, so now users must disambiguate polysemous words from the 

ARTEMIS interface before the parsing occurs. 

 

4.2. Grammar building 

 



ARTEMIS follows the well-known paradigm of constraint-based grammars, 

also known as unification grammars, which can encode grammatical 

knowledge irrespectively of the type of NLP algorithm.24 The key 

component of constraint-based grammars can be found in the complex 

formal descriptions of grammatical units as AVMs, describing features 

which can be merged through the unification operation. Thus, parsing is not 

guided just by the sequence of phrase-structure rules but also by the 

satisfaction of a set of constraints,25 which are intended to determine 

structural preference and semantic plausibility, where no single type of 

constraint is able to resolve any type of local syntactic ambiguity. 

 Unlike an RRG syntactic analysis such as the one shown in Figure 2, 

which is based on an inventory of templates, i.e. syntactic trees which do 

not explicitly state the order of constituents but just their hierarchical 

organization, ARTEMIS relies on three types of feature-based production 

rules, i.e. syntactic, constructional and lexical rules. Firstly, syntactic rules 

are aimed to build the enhanced framework of the LSC (Figure 3). 

Secondly, constructional rules serve to embed the constructional schemata 

stored in the L1-Constructicon into the enhanced LSC. When constructional 

rules are built, some default values in constructional schemata are replaced 

                                                           
24 Moreover, from the approach of computational linguistics, the time of grammar 
development with the formalisms of unification grammars is significantly shorter than with 
phrase-structure grammars (Uszkoreit & Zaenen 1995). 
25 As Cooper (2002: 311) noted, parsing is reduced to a constraint satisfaction problem, i.e. 
“to ensure syntactic well-formedness of a word sequence it is necessary to ensure that all 
constraints are simultaneously satisfied by the sequence”. For this reason, unification 
grammars are said to adopt a “constraint-satisfaction model”. 



by those values in the Core Grammar of the lexical entry of the verb; on the 

contrary, specific values in constructional schemata override those stated in 

the lexical entry, so non-monotonic inheritance takes place in the projection 

operation between the Lexicon and the L1-Constructicon. For instance, 

Figure 9 shows the Core Grammar of the verb pound.26 

 

Figure 9. The Core Grammar of pound. 

 

In this example, the verb is linked to the constructional schema of the 

Caused-Motion Construction, which was shown in Figure 4. Thus, the 

constructional CLS can inherit monotonically the AVMs of the X and Y 

                                                           
26 It should be noted that, instead of letting lexical entries store the default macrorole, 
phrase realization and syntax of variable instantiations, these types of knowledge are 
actually retrieved from the RRG theoretical framework. Mairal-Usón and Periñán-Pascual 
(2009) presented the anatomy of the FunGramKB Lexicon by describing the different types 
of features which form part of a predicate’s lexical entry. 



variables from the lexical entry, whereas the AVM of the W variable is 

introduced and the Aktionsart value in the lexical entry is overriden. Indeed, 

this is grounded on one of the basic tenets of constructivist grammars to 

resolve the conflict between lexical semantics and constructional semantics, 

i.e. the override principle (Michaelis 2003: 101): 

 

If lexical and structural meanings conflict, the semantic specifications 

of the lexical element conform to those of the grammatical structure 

with which that lexical item is combined. 

 

Thirdly, lexical rules provide the tokens with morphosyntactic and semantic 

information from the Lexicon and the Ontology respectively. Unlike 

syntactic rules, which users can pre-define through the Grammar 

Development Environment, constructional and lexical rules are created 

dynamically at runtime. In other words, in order to make sentential 

processing faster and more effective, ARTEMIS will build only those 

constructional and lexical rules which can be directly derived from the 

constructional schemata and lexical entries being linked to the predicates in 

the input stream. Therefore, this stage finally outputs a single text file 

containing those constraint-based production rules which are required to 

parse a given input text. In this fashion, the system can gain efficiency by 

handling only those rules which are potentially relevant, thus minimizing 

the complexity of processing. 



Before we begin to describe the ARTEMIS parser, we should note 

that Pickering and Van Gompel (2006) remind us that one of the main 

concerns in the language processing driven by a feature-based unification 

grammar is that the whole set of constraints which can be involved in the 

processing should be identified beforehand, as well as the precise way these 

constraints can affect that processing. As a result, this type of computational 

model requires a large-scale repository of fine-grained morphosyntactic, 

semantic and pragmatic knowledge on which NLP algorithms are based. 

Otherwise, the system would have to deal with a “lexico-constructional 

knowledge bottleneck”. Indeed, this is the risk that comes when you fail to 

develop properly one of the key components in this type of applications, i.e. 

the knowledge base. 

 

4.3. Syntactic parsing 

 

Since ARTEMIS is currently a proof-of-concept NLP system, we chose to 

perform our syntactic analysis with the constraint-based chart parser in the 

NLTK library (Bird, Klein & Loper 2009: 327-356).27 More particularly, the 

parser is based on Earley’s algorithm (Earley 1970), which can be described 

as a bottom-up chart parser with top-down prediction, thus improving the 

                                                           
27 Since the FunGramKB Suite is developed in ASP.NET and C#, it was necessary to use 
IronPython to integrate the NLTK Python packages into the .NET framework. However, it 
is worth noting that Python is a script language, so the parser coding is in plain text files 
which are compiled at runtime and then interpreted. Therefore, as speed becomes a 
determining factor in any NLP system, we intend to implement a C# version of this chart 
parser when applied in a realistic scenario. 



efficiency of parsing. Chart parsing uses dynamic programming to parse the 

text by iteratively adding edges to a chart. Each edge represents a hypothesis 

about the tree structure for a subsequence of the text. The chart parser 

incrementally adds new edges to the chart, where the chart rules specify the 

conditions under which new edges should be added to the chart. Parsing is 

complete when the chart reaches a stage where none of the chart rules adds 

any new edges. The psychologically-plausible behaviour of this parser lies 

in the fact that it is: 

a. an incremental left-corner parser, where each successive word being 

encountered is incorporated into a larger structure by combining bottom-up 

processing with top-down predictions, and 

b. a parallel parser, since multiple parse structures can be generated locally, 

so there is no need to re-analyse the input if one parse structure proves 

incorrect (i.e. no backtracking). 

From a psycholinguistic approach, in contrast with the two-stage 

model of sentential processing,28 the architecture of the constraint-based 

parser takes the form of an interactive processor which employs both 

syntactic and semantic information from the beginning of the analysis. In 

our case, ARTEMIS is based on an interactive model of language analysis 

which is built upon a database whose (non-)linguistic knowledge is stored in 

                                                           
28 One of the best-known instances of the two-stage model is the Garden-Path (Frazier & 
Fodor 1978; Frazier 1979), in which a processor makes some initial decisions on the basis 
of strategies defined exclusively in terms of syntactic information and in a second phase 
semantic information is used to check whether the initial analysis is adequate. 



several rather independent modules.29 

The second task in this stage consists in resolving global syntactic 

ambiguity, that is, the system should select a winner from among the 

multiple parse trees which can be generated from a given input sentence. A 

particularly common source of syntactic ambiguity is found in 

constructional co-occurrence, or the combination of several constructions 

within the same clause. Figure 10 illustrates the linguistic phenomenon of 

constructional co-occurrence, which is driven by the operation of 

constructional merger, and the impact on the syntax-semantics interface. 

 

Figure 10. ARTEMIS syntax-semantics linkage. 

                                                           
29 See section 2. 



 

Each L1-CONSTRUCTION in the LSC (e.g. Kernel-2, Transitive-

Resultative and Caused-Motion) typically involves the introduction of at 

least one argumental slot into the core of the clause (e.g. two, one and one 

for the previous three constructions respectively), so we could identify in 

the CLS a distinctive “argumental subpattern” for every instantiation of a 

given type of construction, where the first argumental subpattern (i.e. the 

bottom-most L1-CONSTRUCTION in the LSC) serves as the base of the 

argumental expansion. Consequently, any further L1-construction results 

from the merger of the new argumental slot(s) with the constructional base. 

For example, in Figure 10 the argumental pattern consists of three 

subpatterns, as shown in (17). 

(17) Kernel-2, or constructional base: [$POU0D_02 

(%JOH0_00-Agent, +0AIL_01-Goal)] 

Resultative: [$POU0D_02 (%JOH0_00-Agent, 

+0AIL_01-Goal, +FLAT_00-Result)] 

Caused-Motion: [$POU0D_02 (%JOH0_00-Agent, 

+0AIL_01-Goal, +WALL_00-Goal)] 

Therefore, from the approach of the syntax-semantics linkage, we can 

conclude that: 

a. the argumental pattern in the CLS is made up of one or more argumental 

slots, which are instantiated in constructs with the syntactic function of 

argument (ARG) or subordinated nucleus (NUC-S) in the core of the LSC, 



and 

b. the semantic constraints determined by the constructional schema 

assigned to each type of construction in the LSC should also be validated for 

the corresponding argumental subpattern in the CLS.  

Thus, since constructional co-occurrence is a specific instance of 

functional compositionality, we derive as a corollary the principle of 

argumental compositionality: 

(18) The number of slots of the argumental pattern in the CLS 

must be equal to the sum of the number of slots in each 

constructional schema in the LSC. 

When dealing with the resolution of the global syntactic ambiguity raised by 

constructional co-occurrence, we noted that argumental constructions 

cannot co-occur freely. For example, the Inchoative cannot co-occur with 

the Middle Construction in the same clause, or the Kernel-2 with the 

Intransitive Resultative, among many other impossible combinations. 

Therefore, we devised a weight-based distribution method to restrict 

constructional co-occurrence in the clause. Firstly, argumental constructions 

were distributed into groups on the basis of the number of arguments which 

are involved (i.e. one, two or three) and of the FunGramKB module from 

where the system retrieves most of the knowledge required to build the 

constructional rule (i.e. the Lexicon for Kernel Constructions and the L1-

Constructicon for the remainder). Secondly, a weight was assigned to each 

constructional group resulting from the previous step. As shown in Table 1, 



the weight of the construction is fixed in proportion to the number of its 

argumental slots, and the weight is also greater if the constructional schema 

is derived from the L1-Constructicon rather than from the Lexicon.30 

Table 1. Weight-based distribution of argumental constructions. 

Group Description Weight Example 

A An argument subpattern 
derived from a one-
argument constructional 
schema in the L1-
Constructicon 
 

1 Inchoative 
Unexpressed object 

B An argument subpattern 
derived from the one-
argument constructional 
schema in the Lexicon 
Core Grammar 
 

2 Kernel-1 

C An argument subpattern 
derived from a two-
argument constructional 
schema in the L1-
Constructicon 
 

3 Middle 
Instrument subject 
Intransitive resultative 
Location subject 

D An argument subpattern 
derived from the two-
argument constructional 
schema in the Lexicon 
Core Grammar 
 

4 Kernel-2 

E An argument subpattern 
derived from a three-
argument constructional 
schema in the L1-
Constructicon 
 

5 Benefactive 
Caused motion 
Dative 
Transitive resultative 

F An argument subpattern 6 Kernel-3 

                                                           
30 Although constructional merger needs further in-depth corpus-based research, our initial 
experiments have led us to define these two criteria as determining factors in the 
arrangement of constructional groups. 



derived from the three-
argument constructional 
schema in the Lexicon 
Core Grammar 
 

 

Thirdly, we determined the four principles which license constructional 

merger: 

a. Principle of Constructional Anchorage: any L1-CONSTR node above the 

bottom-most one in the LSC should be argumentally anchored on the latter. 

In other words, the argumental slots in the constructional base should also 

be taken into account for the validation of the schemata linked to subsequent 

constructional types in the clause. 

b. Principle of Argumental Expansion: the introduction of an L1-CONSTR 

node in the LSC typically involves the introduction of at least one 

argumental slot in the core. More particularly, in the case of those 

constructions serving as the constructional base, the number of arguments 

ranges from zero to three; on the other hand, any other further constructional 

type usually introduces one new argument. 

c. Principle of Constructional Base Restriction: the constructional base can 

only be performed by Kernel Constructions or by one-argument 

constructional schemata (i.e. A, B, D and F group constructions). Indeed, 

these are the only types of constructions allowed to take this position in the 

LSC; otherwise, the compliance with the Principle of Constructional 

Anchorage would inevitably violate the Principle of Argumental Expansion. 



d. Principle of Constructional Unicity: a given type of construction can 

occur only once in the same clause. 

According to the above four principles, the operation of 

constructional merger can now be defined as the binary relation RMerger, 

which is logically formalised in (19). 

(19) RMerger ⊊ Φ x Ω ∧ ((∃φ ∈ Φ)(∃ω ∈ Ω)(‹φ, ω› ∈ RMerger)) ∧ 

((φ'RMergerω' ∧ φ''RMergerω'') → (φ' ≠ φ'') ∧ (ω' = ω'')), where Φ 

= {c, e} and Ω = {a, b, d, f} 

where the variables [a-f] represent the argumental constructions belonging 

to the constructional groups [A-F] respectively. In particular, the above 

principles are applied to guide the mappings between constructional sets, 

since ¬((∀φ ∈ Φ)(∀ω ∈ Ω)(‹φ, ω› ∈ RMerger)). For example, {‹c, d›, ‹e, f›} ∉ 

RMerger, because two constructions which have the same number of 

argumental slots cannot co-occur; or for instance, ‹c, f› ∉ RMerger, because 

the schema of any further construction added to the constructional base 

should have a higher number of argumental slots than those in the 

constructional base. In both examples, the Principles of Constructional 

Anchorage and Argumental Expansion could not be jointly complied with. 

In the end, the different possibilities of combining constructions are finally 

guided by the constructional merger relation, i.e. RMerger = {‹c, a›, ‹c, b›, ‹e, 



a›, ‹e, b›, ‹e, d›},31 provided that constraints in constructional schemata are 

satisfied. To illustrate, the constructional merger taking place in Figure 10 is 

defined as RMerger: John pounded the nail flat into the wall = {‹Transitive-Resultative, 

Kernel-2›, ‹Caused-Motion, Kernel-2›}. 

 However, although many incompatibilities in constructional co-

occurrence are detected with the previous weight-based distribution method, 

global syntactic ambiguity can still persist, so there would be finally more 

than one parse tree. At this time, each tree would be provided with a 

weighted value as a result of the addition of all the weights corresponding to 

the constructions involved in the constructional merger operation.32 

Consequently, the winning parse tree is that which has the highest weighted 

value. 

The idea of creating a weight-based scheme for argumental 

constructions was motivated primarily by the existence of psycholinguistic 

evidence showing that the human sentence parser can take into account the 

frequency of some constructions in order to resolve local ambiguity (cf. 

Pickering & Van Gompel 2006). In this regard, our current prototype can be 

improved in two key features. Firstly, it would be more effective to apply 

the “weight-based priority” from the beginning of the syntactic parsing with 

the purpose of minimizing global syntactic ambiguity. In fact, in line with 

                                                           
31 Strictly speaking, constructional merger is an asymmetric relation, since it is always the 
new argumental slot which is merged with the constructional base, and not the other way 
around. 
32 See Table 1. 



the development of a psychologically-plausible interactive model of the 

sentence processor, we should not allow constraints to be satisfied in two 

stages, but we should consistently integrate the various constraint sources 

from the very beginning. Secondly, the relative frequency of constructions 

belonging to the same group can also be taken into consideration to resolve 

syntactic ambiguity, requiring us to perform a corpus-based research to 

obtain this probabilistic knowledge. In a nutshell, any improvement in the 

syntactic parser should be aimed at minimizing global syntactic ambiguity 

by resolving all instances of local structural ambiguity as they arise during 

the processing. 

At the end of this stage, the winning parse tree is stored in an XML 

file. To illustrate, Appendix 1 shows the XML-formatted parse tree for the 

sentence “John pounded the nail into the wall”, and Appendix 2 presents the 

XSD schema against which XML-formatted parse trees are validated to 

check well-formedness. 

 

4.4. Parse tree refinement 

 

This stage is aimed to structure the parse tree à la RRG, in such a way that 

we facilitate the building of the graphical representation of the tree33 and the 

CLS. This stage consists of two basic tasks, i.e. relocating tree nodes and 

                                                           
33 More particularly, the XML file was mapped to the DOT language in GraphViz 
(www.graphviz.org) to draw the directed acyclic graph. 



filtering out node attributes, whose XML-based procedures are actually very 

similar: both of them have as input the winning XML-formatted parse tree 

and support the refinement of that tree in accordance with the knowledge 

stored in other XML files. For example, when relocating tree nodes in the 

parse tree, (20) provides the system with the following instructions: any 

argument (ARG) or subordinated nucleus (NUC-S) introduced by L1-

constructions (CONSTR-L1) must be moved to the core in the clause, 

whereas all adjuncts must be placed under the same category of periphery 

(PER). 

(20)  <Nodes> 
  <Parent Node=”CONSTR-L1”> 
   <Child Target=”CORE”>ARG</Child> 
   <Child Target=”CORE”>NUC-S</Child> 
   <Child Target=”PER”>ADJUNCT</Child> 
  </Parent> 
 </Nodes>  

For example, when filtering out attributes, (21) is used to identify the 

relevant attributes of the argument node (ARG). If the node is accompanied 

by non-relevant attributes, then they will be removed from the parse tree. 

On the contrary, if a required attribute does not go with the node, then the 

search will be performed among its subordinated nodes and, in the case of a 

failed attempt, among its superordinates. If the given attribute is finally not 

found, then it will be created with a null value.34 

                                                           
34 Since ARTEMIS is still a work-in-progress system, a grammatical feature provided with 
a null-value attribute should be understood as a grammatical gap in the computational 
implementation of the RRG theory. When ARTEMIS becomes a full-fledged system to 
process real-life texts, then null values will be non-existent. 



(21)  <Node Type=”ARG”> 
  <Att>Type</Att> 
  <Att>Concept</Att> 
  <Att>Role</Att> 
  <Att>Macrorole</Att> 
 </Node>  

XPath is the technology used for the search of elements such as nodes and 

attributes. 

 

4.5. CLS extraction 

 

At the final stage, the CLS results from the extraction of the most relevant 

semantic units together with their attributes from the XML-formatted 

refined tree in the previous stage. To accomplish this stage, we designed an 

XSLT35 stylesheet which can define the pattern-matching rules for 

transforming the XML document into a bracketed representation of the 

CLS, resulting in tasks such as defining the style properties of elements,36 

changing the order in which elements appear in the CLS, and filtering some 

elements on the basis of a certain property. In other words, the syntax-

driven semantics is so embedded in the parse tree itself, certainly much 

more than in the RRG model, that the system will do nothing but remove the 

morphosyntactic units of the LSC and relocate the operators according to 

their scope. For the formal description of the CLS notation, Appendix 3 

                                                           
35 XSLT stands for “Extensible Stylesheet Language Transformations”. 
36 For instance, the FunGramKB concepts are rendered in boldface, and the type and value 
of operators in sub- and superscript characters respectively. 



presents the context-free grammar written in EBNF37 as well as its graphical 

representation. 

 To summarize, Appendix 4 shows a fine-grained activity diagram for 

the whole process of CLS construction. 

 

4.6. Final remark 

 

At this point, we return to the issue of the linguistic models influencing our 

system and focus on the so-called “linking problem”. In this respect, 

ARTEMIS adopts a monostratal model of language, but we do not fully 

agree with RRG that the relationship between semantic and syntactic 

relations should be conditioned by a hierarchy of semantic roles. It is true 

that macroroles in the enhanced LSC are identified according to the RRG 

privileged syntactic argument selection hierarchy, but these macroroles do 

not play a critical role in the syntax-semantics linkage. In fact, they become 

irrelevant, but they are still retrieved just in the case that they could play 

some role in the linguistic generation process.38 As illustrated in Figure 10, 

constructional schemata actually become the cornerstone of the syntax-

semantics interface, so a constructivist approach is adopted in this regard; 

indeed, some arguments are directly contributed by the L1-Constructicon. 

                                                           
37 EBNF (Extended Backus-Naur Form) is a standard notational language used to define 
context-free grammars formally. 
38 Should this not be the case, macroroles would certainly end up disappearing in our 
computational model. 



On the other hand, lexical entries should be provided with pointers to those 

types of constructions in which a given verb can occur, so a functional 

projectionist approach is adopted in this regard. 

This position is much more in line with the LCM, which intends to 

build a bridge between constructivist and projectionist views of language 

comprehension. In this model of meaning construction, the notions of 

lexical template (i.e. low-level representation of the semantic and syntactic 

properties of a predicate) and constructional template (i.e. high-level 

representation of the semantic properties of a construction) are essential to 

explain the syntax-semantics interface. More particularly, the semantic 

interpretation results from a process of lexico-constructional subsumption, 

i.e. the unification between a lexical template and a constructional template. 

In ARTEMIS, the elaboration of constructional rules also involves a lexico-

constructional subsumption. However, in contrast with the LCM, the lexico-

constructional subsumption in ARTEMIS is not a projection process which 

is regulated by internal constraints—e.g. variable suppression or lexical 

blocking, among many others (cf. Mairal-Usón & Ruiz de Mendoza 2008), 

but it should be simply understood as a process of constructional activation 

within the framework of non-monotonic inheritance: that is, when 

constructional schemata are activated, in the case of attributes shared by the 

AVM of the constructional schema and that of the Core Grammar of the 

verb, specific values in the former override default values in the latter. 

Therefore, we prefer not to use the term “projection rules” but 



“constructional activation rules”, where only some values are projected 

from the Lexicon to the Constructicon. 

 

 

5. Conclusions 

 

In this chapter, we have described ARTEMIS, a proof-of-concept NLP 

system which exploits FunGramKB as its knowledge base within the RRG 

framework to model the semantic representation of the input text in terms of 

a CLS. Although the RRG logical structure has been formally simplified for 

the sake of computational efficiency, we have finally achieved a cross-

language semantically-enhanced representation by replacing predicates by 

ontological units and introducing the constructional operator, among some 

other changes. In fact, we regard constructions as meaning-bearing devices 

which play a paramount role in the LSC. Although we have focused this 

chapter on argumental constructions, we intend to progressively incorporate 

other types of constructional meanings into the CLS, such as implicational, 

illocutionary and discursive. Moreover, since ARTEMIS retrieves lexico-

conceptual knowledge from FunGramKB, it will also be possible to exploit 

its reasoning engine to reach a deeper level of comprehension through the 

COREL scheme derived from the CLS. To conclude, we agree with Guest 

(2009) that RRG is a promising theory for extracting sentential meaning 

from a computational viewpoint, making this functional model a better 



alternative to Head-Phrase Structure Grammar and Dependency Grammar. 
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