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ABSTRACT 
In Artificial Intelligence, the main problem in the 
successful development of natural language understanding 
systems lies on the lack of an extensive common-sense 
knowledge base. Common sense is mainly made up of 
semantic and procedural knowledge, which FunGramKB 
stores in the form of meaning postulates and cognitive 
macrostructures respectively. The objective of this paper 
is to describe the reasoner running on the ontology with 
the aim of minimizing redundancy as well as maximizing 
informativeness in the semantic knowledge repository of 
FunGramKB. 
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1. Introduction 
 
FunGramKB is a user-friendly environment for the 
semiautomatic construction of a multipurpose lexico-
conceptual knowledge base for a natural language 
processing (NLP) system within the theoretical model of 
S.C. Dik’s Functional Grammar [1]. Efficient NLP 
systems require a knowledge base solidly based on a 
linguistic theory, so that the system can identify 
regularities in meaning extensions, capture syntactic and 
semantic generalizations from lexical clusters, and 
establish criteria to structure and interpret new data. 
However, FunGramKB is not a literal implementation of 
Dik’s lexical database, but we depart from the functional 
model in some important aspects with the aim of building 
a more robust knowledge base. FunGramKB is made up 
of five independent but interrelated components: lexicon, 
morphicon, onomasticon, cognicon and ontology. Lexical 
units are assigned syntactic, pragmatic and collocational 
information in the lexicon, but their meaning 
representations are conceived as conceptual properties in 
the ontology, so that every sense of a lexical unit is linked 
to a conceptual unit. The morphicon helps our system to 
handle cases of inflectional morphology. Names of 
entities, such as cities, products, etc, are stored in the 
onomasticon. Finally, the cognicon stores procedural 
knowledge by means of cognitive macrostructures, i.e. 

script-like schemata in which a sequence of stereotypical 
actions is structured on the basis of temporal continuity. 
 
In this paper, we describe the reasoner running on the 
meaning postulates in the ontology with the aim of 
maximizing informativeness as well as minimizing 
redundancy. 
 
 
2. Meaning Postulates in FunGramKB 
 
Velardi et alii [2] distinguish two well-defined strategies 
when describing meaning in computational lexicography: 
the cognitive content in a lexical unit can be described by 
means of semantic features or primitives (conceptual 
meaning), or through associations with other lexical units 
in the lexicon (relational meaning). Strictly speaking, the 
latter doesn’t give a real definition of the lexical unit, but 
it describes its usage in the language via ‘meaning 
relations’ with other lexical units. It is certainly easier to 
state associations among lexical units in the way of 
meaning relations than describing the cognitive content of 
lexical units formally, but the inference power of 
conceptual meaning is much stronger. Surface semantics 
can be sufficient in some NLP systems, but the 
construction of a robust knowledge base guarantees its use 
in most NLP tasks, consolidating thus the concept of 
resource reuse. 
 
When meaning postulates are built for an NLP knowledge 
base in order to represent an adult speaker’s linguistic 
competence, dictionaries must be our guide, since they are 
reliable repositories of information which has been judged 
to be relevant for lexical meaning by several generations 
of expert speakers [3]. Indeed, Ide and Véronis [4] 
recommend using several dictionaries as sources of lexical 
acquisition, because what a particular dictionary lacks is 
usually supplied by another dictionary. Machine-readable 
dictionaries used in the acquisition of our knowledge base 
are Collins COBUILD English Dictionary [5], Oxford 
Advanced Learner’s Dictionary [6] and Longman Web 
Dictionary [7]. 
 
In FunGramKB, a meaning postulate is a set of one or 
more logically connected predications, which are 
cognitive constructs carrying the generic features of the 
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concept1. To illustrate, some predications in the meaning 
postulates of an entity (a), event (b) and quality (c) are 
presented2: 
 
a. BIRD 
+(e1: BE (x1: BIRD)Theme (x2:VERTEBRATE)Referent)  
*(e2: HAVE (x1)Theme (x3: m FEATHER & 2 LEG & 2 
WING)Referent) 
*(e3: FLY (x1)Theme) 
 
b. KISS 
+(e1: TOUCH (x1: PERSON)Agent (x2)Theme (f1: 2 
LIP)Instrument (f2: (e2: LOVE (x1)Agent (x2)Theme) | (e2: GREET 
(x1)Agent (x2)Theme))Reason) 
 
c. HUGE 
+(e1: BE (x2)Theme (x1: HUGE)Attribute) 
+(e2: BE (x1)Theme (x3: SIZE)Referent) 
+(e3: BE (x2)Theme (x4: m BIG)Attribute) 
 
For example, predications in (a) have the following 
natural language equivalents: 
 
Birds are always vertebrates. 
A typical bird has many feathers, two legs and two wings. 
A typical bird flies. 
 
Dik [1] proposes using lexical units from the own 
language when describing meaning postulates, since 
meaning definition is an internal issue of the language. 
However, this strategy contributes to lexical ambiguity in 
representation due to the polysemic nature of the defining 
lexical units. In addition, describing the meaning of 
lexical units in terms of other lexical units leads to some 
linguistic dependency [9]. Instead, FunGramKB employs 
conceptual units for the formal description of meaning 
postulates, resulting in an interlanguage representation of 
meaning. 
 
 
3. Monotonic Reasoning and FunGramKB 
 
An NLP application is actually a knowledge-based 
system, so it must be provided with a knowledge base and 
a reasoning engine. Researchers in Artificial Intelligence 
have proved that standard logic is not able to manage 
common-sense reasoning. Monotonic inheritance is not 
able to deal with intrinsic properties of middle-level 
concepts in the ontology, because this type of inheritance 
doesn't admit exceptions to inherited default values. 
Therefore, non-monotonicity is a key issue in human 
reasoning, because it permits the withdrawal of 

                                                             
1  Periñán-Pascual and Arcas-Túnez [8] describe 
the formal grammar of well-formed predications for 
meaning postulates in FunGramKB. 
2  For the sake of clarity, the names of conceptual 
units have been oversimplified. 

conclusions which are true just for the typical members of 
a particular class. 
 
Non-monotonic logics is an umbrella term for a family of 
formalisms based on default reasoning, where the system 
can override previous beliefs in the light of further 
information. Although non-monotonic logics has been 
widely developed in the last 25 years, resulting in 
formalisms such as circumscription [10], default logic 
[11] and autoepistemic logic [12], most of these models 
involve a high computational cost when being 
implemented in working applications which require 
knowledge representation. On the contrary, and despite its 
less-expressive power, the simplicity of defeasible logic 
[13] makes it one of the most efficient non-monotonic 
reasoning model for NLP [14, 15]. Defeasible reasoning 
allows the possibility of working with incomplete 
information, so a closed-world assumption cannot be 
applied. 
 
There are usually three types of rules in a defeasible 
theory [13]: strict rules, defeasible rules and defeaters. 
Strict rules are law-like rules, which have no exceptions: 
e.g. whales are mammals, circles are round. On the other 
hand, defeasible rules can be defeated by contrary 
evidence: e.g. birds typically fly. Finally, defeaters are 
used to block some defeasible rules in order to prevent 
some conclusions. For example, a rule such as "if an 
animal is heavy, then it may not be able to fly" may 
override the conclusion drawn from the defeasible rule 
'birds typically fly'. The superiority relation, in which a 
superior rule may override an inferior one, can be 
expressed by means of rules (e.g. r2 > r1, in case rules can 
be labelled) or a superiority operator. 
 
In FunGramKB, each predication taking part in a meaning 
postulate is preceded by a reasoning operator in order to 
state if the predication is strict (+) or defeasible (*). Our 
inference engine handles predications as rules, allowing 
monotonic reasoning with strict predications, and non-
monotonic with defeasible predications. The superiority 
relation is not explicitly stated in the predications, but the 
priority principle is applied at the different levels of the 
Microconceptual-Knowledge Spreading to resolve 
conflicts between predications. In other words, if two 
defeasible predications which meet during the spreading 
of the meaning postulate turn out to be contradictory, our 
system removes that predication being at the highest level 
of the spreading process. A more accurate account of this 
process is described in the following section. 
 
 
4. Spreading Meaning Postulates 
 
Lexical meaning is like an iceberg - only a small amount 
is visible from the surface, so a word is associated to 
much more semantic information which is really shown in 
its meaning postulate [16]. In FunGramKB, all this 
underlying cognitive information is revealed through a 



process called MicroKnowing (Microconceptual-
Knowledge Spreading), which takes place in the 
ontological component of our system. This multi-level 
process is performed by means of two types of reasoning 
mechanisms: inheritance and inference. Our inheritance 
mechanism strictly involves the transfer of one or several 
predications from a superordinate concept to a subordinate 
one in the ontology. On the other hand, our inference 
mechanism is based on the structures shared between 
predications linked to conceptual units which do not take 
part in the same subsumption relation within the ontology. 
 
The MicroKnowing process can be formally stated as 
follows: 
 
 
 
 
 
 
 
 
 
The MicroKnowing of a particular concept, which is 
called 'nuclear concept', is originated in the meaning 
postulate linked to that conceptual unit. Given that φ 
represents one particular inherited or inferred predication 
at a particular spreading level, Φi is defined as the set of 
predications being inherited or inferred at spreading level i 
providing that i ≥ 1, since Φ0 represents the nuclear 
meaning postulate. On the other hand, Ωi represents the 
extended meaning postulate which has just been spread at 
level i providing that i ≥ 1, since Ω0 is equivalent to Φ0. 
Assuming that n is the total number of levels which are 
necessary to spread the meaning postulate completely, 
where n ≤ (2d - 1) being d the length of the path from the 
nuclear concept to the father metaconcept, Ωn represents 
the final output of a totally-extended meaning postulate. 
 
To illustrate the MicroKnowing, let's take the concept 
TURKEY, whose meaning postulate is the following one: 
 
+(e1: BE (x1: TURKEY)Theme (x2: POULTRY)Referent) 
*(e2: BE (x1)Theme (x3: BIG)Attribute) 
*(e3: n HAVE (x1)Theme (x4: FEATHER)Referent) (f1: HEAD 
& NECK)Location) 

 
At the first spreading level, the inference mechanism is 
triggered, where the nuclear concept (i.e. TURKEY) 
infers a predication from the meaning postulate of another 
concept providing that the nuclear concept acts as the 
selection preference in any constituent of the meaning 
postulate of the target concept. For example, the following 
predication is inferred from the meaning postulate of 
WATTLE: 
 
*(e2: HAVE (x3: TURKEY)Theme (x1: WATTLE)Referent) 
 

Now the inferred predication is incorporated into the 
nuclear meaning postulate, resulting in a first version of 
the extended meaning postulate at the first level. 
Therefore: 
 
 Ω1 => Ω0 ∪ ϕ1 
 
FunGramKB automatically readjusts indices for variables 
e (predication), x (argument) and f (satellite) in inferred or 
inherited predications. 
 
However, our inference model ignores those predications 
in which the genus of the target concept is the nuclear 
concept. FunGramKB's reasoner recognises these cases 
because the nuclear concept appears as a selection 
preference of the Referent argument in the first 
predication of the meaning postulate. This is the case of 
GOBBLER: 
 
*(e1: BE (x1: GOBBLER)Theme (x2: TURKEY)Referent) 
 
On the other hand, the inheritance mechanism is triggered 
at the second spreading level. Now the extended meaning 
postulate inherits those predications in the meaning 
postulate linked to the immediate superordinate of the 
nuclear concept. In our case, the father of TURKEY is 
POULTRY, whose meaning postulate is as follows: 
 
+(e1: BE (x1: POULTRY)Theme (x2: BIRD)Referent) 
*(e2: BE (x1)Theme (x3: DOMESTIC)Attribute) 
*(e3: KEEP (x4: PERSON)Theme (x1)Referent (f1: 
FARM)Location) 
*(e4: OBTAIN (x5: PERSON)Theme (x6: EGG, MEAT)Theme 
(f2: x1)Origin) 
 
From this point on, both inference (I) and inheritance (H) 
mechanisms are cyclically applied to any genus in any 
meaning postulate within the conceptual path between the 
nuclear concept and its metaconcept. In figure 1, circles 
represent conceptual units, whose meaning postulates take 
an active part in the reasoning task: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Inference and Inheritance in FunGramKB's Ontology. 
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The following table presents some of the output in the 
MicroKnowing for the nuclear concept TURKEY, where 
levels 1 and 4 happen with inference, and levels 2, 3 and 5 
with inheritance: 

 
A key issue in defeasible reasoning is how to process the 
conflict that arises with competing rules. In FunGramKB, 

conflicts are presented between contradictory 
predications. When our system needs to check if 
predication φ is compatible with the predications within 
meaning postulate Ω, our reasoning engine uses both strict 
and defeasible predications. If φ is a strict predication, 
then it is automatically incorporated into Ω. On the 
contrary, if φ is a defeasible predication, then 
compatibility with predications in Ω must be validated; in 
other words, predication φ is compatible with predications 
in Ω if and only if Ω does not contain a predication ¬φ. In 
order to implement the resolution method of incompatible 
predications, it is necessary to apply the 'stepwise 
conceptual decomposition' (SCD) of all predications 
involved in the MicroKnowing. 
 
The SCD is founded on the 'stepwise lexical 
decomposition' principle proposed by Dik [1]. This 
principle establishes a way of interrelating lexical entries 
where the definiens in a meaning postulate can be 
converted into the definiendum of another meaning 
postulate. The fact that the functional model is provided 
with a lexical decomposition process enables the 
construction of meaning postulates in a simple fashion, as 
well as minimizing information redundancy. In 
FunGramKB, the SCD is similar to Dik's principle, apart 
from the fact that the main building blocks of our meaning 
representations are not lexical units but concepts. 
Therefore, the SCD is defined as the process in which 
conceptual units in a predication are substituted by their 
respective meaning postulates until a meaning 
representation composed of basic concepts is reached. 
When the SCD is applied in the MicroKnowing, the 
nuclear concept is the only one which does not undergo 
this SCD process; otherwise, a large number of 
predications would be repeated. The SCD of a predication 
φ which is incorporated into an extended meaning 
postulate Ω is essential in order to check consistency of φ 
with Ω, that is, if there is no ¬φ in Ω. The compatibility 
problem can be efficiently tackled just in case two 
predications are compared with the same conceptual 
depth, and more particularly at the root level. For 
example, the extended meaning postulate of TURKEY has 
predications [a] and [b] among others and we want to 
know if predication [c] can be inferred from AVIARY so 
that conclusion [d] can be reached: 
 
[a] +(e7: BE (x1: TURKEY)Theme (x8: BIRD)Referent) 
[b] *(e2: BE (x1: TURKEY)Theme (x3: BIG)Attribute) 
[c] *((e18: KEEP (x19: PERSON)Theme (x1: 

BIRD)Referent (f4: AVIARY)Location) (e19: BE 
(x1)Theme (x20: SMALL)Attribute)) 

 __________________________________ 
[d] *(e18: KEEP (x19: PERSON)Theme (x1: 

TURKEY)Referent (f4: AVIARY)Location) 
 
Predications [a], [b] and [c] are compatible at this level of 
decomposition, but after the SCD the system recognises 
that (b) is in conflict with (c) because of predication [e] in 

Level Meaning Postulate Activator 
+ (e1: BE (x1: TURKEY)Theme 
(x2: POULTRY)Referent) 

TURKEY 

*(e2: BE (x1)Theme (x3: 
BIG)Attribute) 

TURKEY 

Φ0 *(e3: n HAVE (x1)Theme (x4: 
FEATHER)Referent) (f1: HEAD & 
NECK)Location) 
 

TURKEY 
 

+(e4: HAVE (x1)Theme (x5: 
WATTLE)Referent) 

WATTLE 

+(e5: GOBBLE (x1)Theme) GOBBLE Φ1 +(e6: OBTAIN (x6: 
PERSON)Agent (x7: 
TURKEY_01)Theme (f2: x1)Origin) 

TURKEY_01 

+(e7: BE (x1)Theme (x8: 
BIRD)Referent) 

POULTRY 

*(e8: BE (x1)Theme (x9: 
DOMESTIC)Attribute) 

POULTRY 
Φ2 

*(e9: KEEP (x10: 
PERSON)Theme (x1)Referent (f3: 
FARM)Location) 

POULTRY 

+(e10: BE (x1)Theme (x11: 
VERTEBRATE)Referent) 

BIRD 

*(e11: HAVE (x1)Theme (x12: 
FEATHER)Referent) 

BIRD 

*(e12: HAVE (x1)Theme (x13: 
LEG)Referent) 

BIRD 

*(e13: HAVE (x1)Theme (x14: 
WING)Referent) 

BIRD 

*(e14: LAY (x1)Agent (x15: 
EGG)Theme) 

BIRD 

Φ3 

*(e15: FLY (x1)Theme (f4: 
WING)Instrument) 

BIRD ∪ WING 

*(e16: CHIRP (x1)Theme) CHIRP 
*(e17: HAVE (x1)Theme (x16: 
CLAW)Referent (f5: TOE)Location) 

CLAW 

*(e18: PECK (x1)Agent (x17: 
THING)Theme) 

PECK 

*(e19: HAVE (x1)Theme (x18: 
BEAK)Referent) 

BEAK 

Φ4 

*(e20: PREEN (x1)Theme) PREEN 
+(e21: BE (x1)Theme (x19: 
ANIMAL)Referent) 

VERTEBRATE 

+(e22: CONTAIN (x1)Theme (x20: 
SKELETON)Referent) 

VERTEBRATE 

+(e23: CONTAIN (x1)Theme (x21: 
BACKBONE)Referent) 

VERTEBRATE Φ5 

*(e24: HAVE (x1)Theme (x22: 
TAIL)Referent (f6: BACK)Location) 

VERTEBRATE 



the meaning postulate of SMALL, so predication [c] is 
rejected: 
 

SMALL 
+(e1: BE (x2)Theme (x1: SMALL)Attribute) 
+(e2: BE (x1)Theme (x3: SIZE)Referent) 

[e] +(e3: n BE (x2)Theme (x4: BIG)Attribute) 
 
The most relevant advantage of this reasoner for an NLP 
knowledge base is to avoid unnecessary duplication of 
information, as well as the possibility of updating the 
knowledge base in a consistent way. When the language 
engineer modifies an existing meaning postulate or builds 
a new one, just before being stored, FunGramKB 
automatically performs the MicroKnowing for that 
meaning postulate in order to check the compatibility of 
the newly-incorporated predications with other 
predications involved in the reasoning process. The 
language engineer is informed about all those inferred or 
inherited predications which are not true for the nuclear 
concept. In addition, FunGramKB displays the whole 
MicroKnowing process step by step, enabling us to verify 
inference and inheritance conditions in a transparent way. 
 
 
5. Computational Implementation of 
Meaning Postulates 
 
Language engineers enter meaning postulates through a 
dedicated editor in FunGramKB's ontology interface. The 
construction of our knowledge base is semiautomatic in 
the sense that human intervention is required but the 
engineer's intuition is guided and reviewed through a 
series of user-friendly tools for lexico-conceptual 
acquisition. For example, when creating or modifiying 
meaning postulates, a syntactic-semantic checker is 
activated, so that consistent well-formed meaning 
postulates can be stored. When a meaning postulate is 
stored, a parser outputs an XML-formatted feature-value 
structure used as the input for the reasoning engine, so that 
inheritance and inference mechanisms can be applied. 
Both the syntactic-semantic validator of meaning 
postulates and the XML parser were written in C#. XML 
was chosen as the language for knowledge representation 
in FunGramKB because it helps the system with the 
establishment of premises for structured data transfer, the 
autonomous separation of knowledge from its 
representation formalism, and the atomization of the 
various components the meaning postulate is made up of, 
speeding up in this way the inference process and the 
direct access to particular conceptual units in the meaning 
postulate. To illustrate, figure 2 presents the XML 
representation of some predications in the meaning 
postulate of concept SILVER: 
 
SILVER 
+(e1: +BE_00 (x1: +SILVER_00)Theme (x2: 
+METAL_00)Referent) 
*(e2: +BE_00 (x1)Theme (x3: +EXPENSIVE_00)Attribute) 

+(e3: +TRAVEL_00 (x4: +ELECTRICITY_00)Theme (f1: 
x1)Means) 

 
Figure 2. An XML Meaning Postulate. 

 
 
6. Conclusion 
 
FunGramKB is a workbench for the semiautomatic 
construction of a multipurpose knowledge base for NLP 
systems, mainly those requiring natural language 
understanding. In this paper we have presented the multi-
level process of spreading those knowledge 
representations linked to ontological concepts. In 
particular, we have shown that the cyclical application of 
the inheritance and inference mechanisms on our meaning 
postulates allow FunGramKB to minimize redundancy as 
well as keeping our knowledge base as informative as 
possible. 
 
Since lexical meaning is not enough to build human 
common-sense, FunGramKB is provided with general 
procedural knowledge through the cognicon. We are 
currently working on the MacroKnowing 
(Macroconceptual-Knowing Spreading), i.e. the process of 
integrating meaning postulates from the ontology with the 
cognitive macrostructures in the cognicon. This 
combination of semantic and procedural knowledge, so 
distinctive of human reasoning, is hardly found in NLP 
systems to date. 
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