

Meaning Postulates in a Lexico-Conceptual Knowledge Base

Carlos Periñán Pascual
Unidad Central de Idiomas

Universidad Católica San Antonio de Murcia

Francisco Arcas Túnez
Departamento de Informática de Sistemas

Universidad Católica San Antonio de Murcia

Abstract

Some natural language processing systems, e.g. machine
translation, require to have a knowledge base with
conceptual representations reflecting the structure of
human beings’ cognitive system. In some other systems,
e.g. automatic indexing or information extraction, surface
semantics could be sufficient, but the construction of a
robust knowledge base guarantees its use in most natural
language processing tasks, consolidating thus the concept
of resource reuse. This paper describes how meaning
postulates can be built through FunGramKB, resulting in a
knowledge base which provides deep semantics.

1: FunGramKB

 FunGramKB is a lexicographical tool for the
semiautomatic construction of a multipurpose lexico-
conceptual knowledge base for a natural language
processing (NLP) system within the theoretical model of
S.C. Dik’s Functional Grammar [1]. FunGramKB is not a
literal implementation of Dik’s lexicon, but we depart from
the functional model in some important aspects with the
aim of building a more robust knowledge base.

The objective of this paper is to describe meaning
postulates that can be built through FunGramKB. Due to
our conceptualist approach, firstly it is necessary to
describe the way our ontological component is organized.

2: Ontological model in FunGramKB

In the field of knowledge engineering, the ontology is
intended to store specific domain knowledge shared by a
community. Particularly, FunGramKB’s ontological
component takes the form of a universal concept
taxonomy, where ‘universal’ means that every concept we
could imagine has an appropriate place in this ontology.
Moreover, our ontology is linguistically motivated, as a
result of its involvement with the semantics of lexical
units, but the knowledge stored in our ontology is not
specific to any particular language.

Our ontological model distinguishes three different
conceptual levels, each one of them with concepts of a
different type: metaconcepts, basic concepts and terminals
(figure 1).

#ENTITY

#PHYSICAL #ABSTRACT

#OBJECT

#LIVING

+PERSON +PLANT +ANIMAL

+VERTEBRATE

+BIRD

+POULTRY

$TURKEY

$GOBBLER

#MATTER

#NON-LIVING

…

…

…

…

…

…

…

Figure 1. An example of ontological structuring in

FunGramKB.

 Metaconcepts, preceded by symbol #, constitute the
upper level in the taxonomy. The analysis of the main
upper-level linguistic ontologies led to a metaconceptual
model whose design contributes to the integration and
exchange of information with other ontologies. Moreover,
our metaconcepts play the role of ‘hidden categories’, that
is, concepts which aren’t linked to any lexical unit so that
they can serve as ‘hidden’ superordinates and avoid
circularity. Root metaconcepts are #ENTITY,
#ATTRIBUTE and #EVENT. One of the metaproperties of
events is the prototypical thematic pattern, which is non-
monotonically inherited as a conceptual frame by
subordinate basic concepts and terminals, and finally

linked to lexical units with the aim of building their
frames.
 Basic concepts, preceded by symbol +, are used in
FunGramKB as defining units enabling the construction of
meaning postulates for basic concepts and terminals, as
well as taking part as selection preferences in conceptual
and lexical frames.
 The terminal level, where concepts are headed by
symbol $, is not hierarchical structured; however, terminals
are not presented indiscriminately as members of concept
lists associated to basic concepts, but terminals are
supplied with a series of properties. The border line
between basic concepts and terminals is based on their
definitory potential to take part in meaning postulates.

As far as basic concepts and terminals are concerned,
properties of particular interest are the conceptual frame
and the meaning postulate. As an example, the values of
these properties for concept +FORBID are presented:

Conceptual frame
+FORBID (x1: +PERSON)Agent (x2)Theme (x3:
+PERSON)Goal

Meaning postulate
+(e1: +SAY (x1)Agent (x3)Goal (x4: (e2: n +DO (x3)Agent
(x2)Theme))Theme)

The interlinguistic nature of conceptual frames and
meaning postulates is manifest in that these constructs are
similar in the representation of the same state of affairs in
different languages.

3: Meaning postulates in FunGramKB

3.1: Overview

Velardi et alii [8] distinguish two well-defined
strategies when describing meaning in computational
lexicography: i.e. the cognitive content in a lexical unit can
be described by means of semantic features or primitives
(conceptual meaning), or through associations with other
lexical units in the lexicon (relational meaning). Strictly
speaking, the latter doesn’t give a real definition of the
lexical unit, but it describes its usage in the language via
‘meaning relations’ with other lexical units. It is certainly
easier to state associations among lexical units in the way
of meaning relations than formally describing the cognitive
content of lexical units, but the inference power of
conceptual meaning is stronger. Surface semantics can be
sufficient in some NLP systems, but the construction of a
robust knowledge base guarantees its use in most NLP
tasks, consolidating thus the concept of resource reuse.

In FunGramKB, the meaning postulate is conceived
as a property of basic concepts and terminals. Root basic
concepts are an exceptional case, because they are treated
as semantic primitives. Current lexicalist models agree to
handle lexical meaning as a cognitive representation
reflecting the speakers’ shared knowledge about the
referent linked to a given linguistic expression. Therefore,
when representing one of the meanings of a lexical unit,

we are really representing the meaning of a concept. This
is the reason why meaning postulates are processed as a
conceptual property in FunGramKB.

3.2: Formal grammar of meaning postulates

 In FunGramKB, a meaning postulate is a set of one or
more logically connected predications, which are cognitive
constructs carrying the generic features of the concept. In
this section we describe the formal grammar which allows
the machine to recognize well-formed predications for a
meaning postulate. To illustrate, some predications in the
meaning postulate of concept +BIRD are presented:

[a] +(e1: +BE (1 x1: +BIRD)Theme (1 x2:

+VERTEBRATE)Referent)
[b] *(e2: HAVE (1 x1)Theme (1 x3: +FEATHER)Referent (2 x3:

+LEG)Referent (2 x3: +WING)Referent)
[c] *(e3: +FLY (1 x1)Theme)

 In other words:

[a] Birds are always vertebrates.
[b] A typical bird has feathers, two legs and two wings.
[c] A typical bird flies.

 Our analysis starts with the syntactico-semantic
description of participants, i.e. the smallest conceptual
representation structures within predications. Just like in
Dik’s Functional Grammar, there are two types of
participants: arguments and satellites. In both cases, their
syntactic representation is as follows:

Λ ≡ (∑ α Π : ∑ Ξ)ω
i = 0

1

j = 0

n

 α = [1 | 2 | 3 | 4 ... m | s | p | i]
 Π = [x | f]

ω = [Agent | Theme | Referent | Location | Origin
| Goal | Beneficiary | Attribute | Means |
Company | Instrument | Role | Route |
Comparison | Manner | Scene | Reason | Distance
| Time | Time_from | Time_to | Duration |
Frequency | Purpose | Result | Coocurrence |
Sequence | Condition | Speed | Location_in |
Location_out]

That is, Λ is a participant whose type is specified by

Π, where indexed labels x and f are used by arguments and
satellites respectively. A participant can be preceded by an
operator (α), which applies a specific kind of
quantification to the concept expressed as a selection
preference (table 1):

Feature Value
absolute quantifier 1 | 2 | 3 | 4 ...
relative quantifier m | s | p

indefinite quantifier i

Table 1. Participant operators.

 If a quantification operator is incorporated, this will
be as restricted as possible. In other words, if we refer to
one entity, then operator 1 will always be used. Some
alternatives arise when the selection preference is
associated to more than one referent. In these cases, our
decision is based on the parameters established by table 1.
That is, if the exact number of entities is known, then an
absolute quantifier is used; otherwise, we try to state if
there are many (m), some (s) or just a few (p) referents.
Finally, if none of these criteria can be applied, then
operator i is chosen by default, which is read as ‘it refers to
more than one entity, but we don’t know how many’.
 These quantification operators are not obligatory,
because there are some cases where it is impossible to
apply one particular operator, e.g. when the concept to be
quantified refers to an uncountable entity (e.g. air), or the
selection preference is an attribute or a predication.
 When selection preferences (Ξ) are stated, a colon (:)
is used to separate them from their type of participant (Π),
that is, argument or satellite. Selection preferences in a
participant can be expressed by means of a predication, or
one or more basic concepts from the entity or attribute
subhierarchies in the ontology. Multiple selection
preferences within a participant are linked by no logical
connector, because they are handled as items of a list. In
this case, a comma is used as a separator for selection
preferences.
 Moreover, every participant performs one and only
one semantic function (ω). Regarding the inventory of
semantic functions in FungramKB, some are argument-
oriented (e.g. Agent, Theme, Referent), others are satellite-
oriented (e.g. Means, Company, Instrument, Role, Route,
Comparison, Manner, Scene, Reason, Distance, Time,
Time_from, Time_to, Duration, Frequency, Location_in,
Location_out, Purpose, Result, Coocurrence, Sequence,
Condition, Speed), and finally there are some functions
which can be used indistinctively for both arguments and
satellites (e.g. Location, Origin, Goal, Beneficiary,
Attribute).
 Dik’s Functional Grammar proposes using lexical
units from the own language when describing meaning
postulates, since meaning definition is an internal issue of
the language. However, this strategy contributes to lexical
ambiguity in representation due to the polysemic nature of
the defining lexical units. In addition, describing the
meaning of lexical units in terms of other lexical units
leads to some linguistic dependency. Instead, FunGramKB
uses concepts for the formal description of meaning
postulates.
 On the other hand, the syntactic representation of a
predication is as follows:

 δ = [+ | *]

β = [ing | pro | egr | rpast | npast | pres | nfut | rfut
| cert | prob | pos | obl | adv | perm | n]

 That is, a predication ∆ is stated by an indexed e,
which is always followed by a colon and an event (Γ) from
the basic coneptual level of the ontology. Between the
colon and the event concept, it is possible to insert one or
more operators, up to five. Each one of these operators
conveys a different feature (table 2)1:

Feature Value
Aspectuality ing | pro | egr
Temporality rpast | npast |

pres | nfut | rfut
Epistemic modality cert | prob | pos

Non-epistemic
modality

obl | adv | perm

Polarity n

Table 2. Predication operators.

 Aspectuality operators show the distinctions occuring
in the development of an event, in terms of the start-
continuation-end of the event: e.g. ingressive (ing),
progressive (pro) and egressive (egr). In other words, these
operators show a temporal component which is relevant in
the internal development of the state of affairs, instead of
positioning the event in a time axis.
 Temporality operators are used to position the state of
affairs designated by the predication in some interval along
the time axis: e.g. remote past (rpast), near past (npast),
present (pres), near future (nfut) and remote future (rfut).
 With regard to modality, two broad categories of
operators are distinguished, i.e. epistemic and non-
epistemic, depending on if the speaker evaluates or not the
truth of the predication. In FunGramKB, epistemic
modality operators indicate the certainty (cert), probability
(prob) or possibility (pos) that the information represented
in the predication is true from the speaker’s point of view.
On the other hand, non-epistemic modality operators
reflect a strong deontic nature, stating the obligation (obl),
advise (adv) or permission (perm) of the information in the
predication.
 Our polarity operator n is similar to predicate neg in
d-Prolog [6], since negative information can be explicitly
stated. Therefore, it is different from the built-in operator
not in Prolog, which indicates negation by failure.
 Finally, each predication taking part in a meaning
postulate is preceded by a reasoning operator (δ) in order
to state if the predication is strict (+) or defeasible (*). Our
inference engine handles predications as rules, allowing
monotonic reasoning with strict predications, and non-
monotonic with defeasible predications. Strict predications
are law-like rules, which have no exceptions: e.g. whales
are mammals, circles are round. On the other hand,
defeasible predications, which make up our commonsense,
can be withdrawn in the light of some more specific
predication, which can be strict or defeasible. Thus,
defeasible predications are rules which perform inference
allowing contradictory information to override them: e.g.

∆ ≡ δ (e: ∑ β Γ ∑ Λ)
k = 0

5

l = 0

n

1 This table is not intended to provide an exhaustive list of
predication operators.

birds typically fly. Defeasible reasoning allows the
possibility of working with incomplete information, so a
closed-world assumption cannot be applied.
 There are three logical connectors used in
FunGramKB: conjunction (&), disjunction (|) and
exclusion (^). Conjunction is the default logical
connection, so it is also effective when two participants or
predications are simply concatenated with no explicit
connector.
 The construction of meaning postulates in
FunGramKB is semiautomatic, because human
intervention is required, but the lexicographer’s intuition is
guided and reviewed through our lexicographical tool, so
that consistent well-formed predications can be stored
(figure 2).

Figure 2. Ontology editor in FunGramKB.

When predications are built for a NLP knowledge
base

.3: Computational implementation

In this section, we describe the computational
pl

 in order to represent an average adult speaker’s
linguistic competence, dictionaries must be our guide [5].
Dictionaries are reliable repositories of information that
several generations of expert speakers have judged to be
relevant for lexical meaning. In that respect, FunGramKB
works with several machine-readable dictionaries, Collins
COBUILD English Dictionary [7], Oxford Advanced
Learner’s Dictionary [2] and Longman Web Dictionary
[4], and the linguistic taxonomy WordNet 1.6. Ide and
Véronis [3] recommend using several dictionaries as
sources of lexical acquisition, because what a particular
dictionary lacks is usually supplied by another dictionary.

3

im ementation of meaning postulates in FunGramKB.
The first stage of this process was the formal definition of
the theoretical model explained in section 3.2 by means of
a context-free grammar, resulting in table 32.

2 Strictly speaking, the grammar in this table is not well-formed,
because symbol λ is not used within the start-symbol axiom. However,
this decision was taken in the interests of a more expressive clarity.

<S>
<Se>
<STRe>

<LBCv>
<OPe>

<Lasp>

<Ltem>

<Lmode>

<Lmodne>
<OPasp>
<OPtem>
<OPmode>
<OPmodne>
<OPneg>
<Lx>
<X>

<LSPx>
<SFx>

<LBCea>

<Lf>
<Sf>
<STRf>

<LSPf>
<SFf>

<N>
<D>
<CON>
<OPr>
<OPxf>

::=
::=
::=

::=
::=

::=

::=

::=

::=
::=
::=
::=
::=

 ::=
::=
::=

 ::=
::=

::=

 ::=
::=
::=

::=
::=

::=
::=
::=
::=

 ::=

<S><CON><Se>|<Se>
<Se><STRe>|<STRe>
(<S>)|<OPr>(e<N>:<OPe><LBCv>
<Lx><Lf>)|<OPr>(e<N>:<OPe>
<LBCv><Lx>)
<List of basic concepts_event>
<Lasp>|<Ltem>|<Lmode>|
<Lmodne>|<OPneg>
<OPasp><Ltem>|<OPasp><Lmode>
|<OPasp><Lmodne>|<OPasp>
<OPneg>|<OPasp>
<OPtem><Lmode>|<OPtem>
<Lmodne>|<OPtem><OPneg>|
<OPtem>
<OPmode><Lmodne>|<OPmode>
<OPneg>|<OPmode>
<OPmodne><OPneg>|<OPmodne>
ing|pro|egr
rpast|npast|pres|nfut|rfut
cert|prob|pos
obl|adv|perm
n
<Lx><CON><X>|<X>
(<OPxf> x<N><LSPx>)<SFx>|
(<OPxf> x<N>)<SFx>|(<OPxf>)
<SFx>
:<LBCea>|:<S>
Agent|Theme|Referent|Goal|
Beneficiary|Attribute|Location|
Origin
<List of basic concepts_entity_
attribute>
<Lf><CON><Sf>|<Sf>
<Sf><FF>|<FF>
(<Lf>)|(<OPxf> f<N>:<LSPf>)
<SFf>
<LBCea>|<S>|x<N>
Beneficiary|Company|Instrument|
Role|Origin|Route|Goal|Comparison|
Manner|Location|Scene|Reason|
Distance|Time|Time_from|Time_to|
Duration|Frequency|Purpose|Result|
Coocurrence|Sequence|Condition|
Attribute|Means|Speed|Location_in|
Location_out
<N><D>|0|1|2|3|4|5|6|7|8|9
0|1|2|3|4|5|6|7|8|9
||^|&|λ
+|*|λ
<N>|m|s|p|i

Table 3. Context-free grammar for meaning postulates.

The second stage involved the election of a language
for knowledge representation in FunGramKB. XML was
chosen because it helps the system with the establishment
of premises for structured data transfer, the autonomous
separation of knowledge from its representation
formalsism, and the atomization of the various components
the meaning postulate is made up of, speeding up the

inference process and the direct access to particular
conceptual units in the meaning postulate. One of the first
steps in this second stage was the conversion of the
context-free grammar in table 3 into an XML schema, so
that the application could recognize well-formed meaning
postulates. To illustrate, figure 3 displays the XML
representation of some predications in the meaning
postulate of concept +SILVER_00:

SILVER_00
+(e1: +BE_00 (x1: +SILVER_00)Theme (x2:
+METAL_00)Referent)
*(e2: +BE_00 (x1)Theme (x3: +EXPENSIVE_00)Attribute)
+(e5: +TRAVEL_00 (x4: +ELECTRICITY_00)Theme (f1:
x1)Means)

<S>
 <e N="1" OPr="+">
 <LBCv>+BE_00</LBCv>
 <x N="1" SFx="Theme">
 <LBCea>+SILVER_00</ LBCea >
 </x>
 <x N="2" SFx="Referent">
 <LBCea>+METAL_00</LBCea>
 </x>
 </e>
 <e N="2" OPr="*">
 <LBCv>+BE_00</LBCv>
 <x N="1" SFx="Theme"/>
 <x N="3" SFx="Attribute">
 <LBCea>+EXPENSIVE_00</LBCea>
 </x>
 </e>
 <e N="3" OPr="+">
 <LBCv>+TRAVEL_00</LBCv>
 <x N="4" SFx="Theme">
 <LBCea>+ELECTRICITY_00</LBCea>
 </x>
 <f N="1" SFf="Means">
 <x>1</x>
 </f>
 </e>
</S>

Figure 3. Meaning postulate for +SILVER_00 in XML.

Acknowledgements

FunGramKB is part of the research carried out in the
project ‘Construcción de un lexicón multipropósito para el
procesamiento del lenguaje natural’ funded by Universidad
Católica San Antonio de Murcia, code number PMAFI-PI-
03/1C/03.

References

[1] Dik, S.C. 1997 (1989). The Theory of Functional Grammar.
Berlin-New York: Mouton de Gruyter.

[2] Hornby, A.S. 2003. Oxford Advanced Learner's Dictionary of
Current English. Oxford: Oxford University Press.
[http://www.oup.com/elt/global/products/oald]

[3] Ide, N. and J. Véronis. 1994. “Machine readable dictionaries:
what have we learned, where do we go?”. Proceedings of the
Post-Coling 94 International Workshop on Directions of Lexical
Research. 137-146.

[4] Longman Group. 2001. Longman Web Dictionary. Harlow:
Longman. [http://www.longmanwebdict.com]

[5] Marconi, D. 1997. Lexical Competence. Cambridge-
Massachusetts: the MIT Press.

[6] Nute, D. 1993. “Defeasible Prolog”. Working Papers of the
1993 AAAI Fall Symposium on Automated Deduction and
Nonstandard Logics. Menlo Park: AAAI Press. 105-112.

[7] Sinclair, J., ed. 1995 (1987). Collins COBUILD English
Dictionary. London: Collins.

[8] Velardi, P., M.T. Pazienza and M. Fasolo. 1991. “How to
encode semantic knowledge: a method for meaning
representation and computer-aided acquisition”. Computational
Linguistics 17, 2. 153-170.

	Meaning Postulates in a Lexico-Conceptual Knowledge Base
	Abstract

	Conceptual frame
	Meaning postulate
	
	
	Acknowledgements
	References

	[5] Marconi, D. 1997. Lexical Competence. Cambridge-Massachusetts: the MIT Press.
	[6] Nute, D. 1993. “Defeasible Prolog”. Working P
	[8] Velardi, P., M.T. Pazienza and M. Fasolo. 199

