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Abstract 
 
Some natural language processing systems, e.g. machine 
translation, require to have a knowledge base with 
conceptual representations reflecting the structure of 
human beings’ cognitive system. In some other systems, 
e.g. automatic indexing or information extraction, surface 
semantics could be sufficient, but the construction of a 
robust knowledge base guarantees its use in most natural 
language processing tasks, consolidating thus the concept 
of resource reuse. This paper describes how meaning 
postulates can be built through FunGramKB, resulting in a 
knowledge base which provides deep semantics. 
 
 
1: FunGramKB 
 
 FunGramKB is a lexicographical tool for the 
semiautomatic construction of a multipurpose lexico-
conceptual knowledge base for a natural language 
processing (NLP) system within the theoretical model of 
S.C. Dik’s Functional Grammar [1]. FunGramKB is not a 
literal implementation of Dik’s lexicon, but we depart from 
the functional model in some important aspects with the 
aim of building a more robust knowledge base. 

The objective of this paper is to describe meaning 
postulates that can be built through FunGramKB. Due to 
our conceptualist approach, firstly it is necessary to 
describe the way our ontological component is organized. 
 
2: Ontological model in FunGramKB 
 

In the field of knowledge engineering, the ontology is 
intended to store specific domain knowledge shared by a 
community. Particularly, FunGramKB’s ontological 
component takes the form of a universal concept 
taxonomy, where ‘universal’ means that every concept we 
could imagine has an appropriate place in this ontology. 
Moreover, our ontology is linguistically motivated, as a 
result of its involvement with the semantics of lexical 
units, but the knowledge stored in our ontology is not 
specific to any particular language. 

Our ontological model distinguishes three different 
conceptual levels, each one of them with concepts of a 
different type: metaconcepts, basic concepts and terminals 
(figure 1). 
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Figure 1. An example of ontological structuring in 

FunGramKB. 
 
 Metaconcepts, preceded by symbol #, constitute the 
upper level in the taxonomy. The analysis of the main 
upper-level linguistic ontologies led to a metaconceptual 
model whose design contributes to the integration and 
exchange of information with other ontologies. Moreover, 
our metaconcepts play the role of ‘hidden categories’, that 
is, concepts which aren’t linked to any lexical unit so that 
they can serve as ‘hidden’ superordinates and avoid 
circularity. Root metaconcepts are #ENTITY, 
#ATTRIBUTE and #EVENT. One of the metaproperties of 
events is the prototypical thematic pattern, which is non-
monotonically inherited as a conceptual frame by 
subordinate basic concepts and terminals, and finally 



linked to lexical units with the aim of building their 
frames. 
 Basic concepts, preceded by symbol +, are used in 
FunGramKB as defining units enabling the construction of 
meaning postulates for basic concepts and terminals, as 
well as taking part as selection preferences in conceptual 
and lexical frames. 
 The terminal level, where concepts are headed by 
symbol $, is not hierarchical structured; however, terminals 
are not presented indiscriminately as members of concept 
lists associated to basic concepts, but terminals are 
supplied with a series of properties. The border line 
between basic concepts and terminals is based on their 
definitory potential to take part in meaning postulates. 

As far as basic concepts and terminals are concerned, 
properties of particular interest are the conceptual frame 
and the meaning postulate. As an example, the values of 
these properties for concept +FORBID are presented: 
 
Conceptual frame 
+FORBID (x1: +PERSON)Agent (x2)Theme (x3: 
+PERSON)Goal 
 
Meaning postulate 
+(e1: +SAY (x1)Agent (x3)Goal (x4: (e2: n +DO (x3)Agent 
(x2)Theme))Theme) 
 

The interlinguistic nature of conceptual frames and 
meaning postulates is manifest in that these constructs are 
similar in the representation of the same state of affairs in 
different languages. 
 
3: Meaning postulates in FunGramKB 
 
3.1: Overview 
 

Velardi et alii [8] distinguish two well-defined 
strategies when describing meaning in computational 
lexicography: i.e. the cognitive content in a lexical unit can 
be described by means of semantic features or primitives 
(conceptual meaning), or through associations with other 
lexical units in the lexicon (relational meaning). Strictly 
speaking, the latter doesn’t give a real definition of the 
lexical unit, but it describes its usage in the language via 
‘meaning relations’ with other lexical units. It is certainly 
easier to state associations among lexical units in the way 
of meaning relations than formally describing the cognitive 
content of lexical units, but the inference power of 
conceptual meaning is stronger. Surface semantics can be 
sufficient in some NLP systems, but the construction of a 
robust knowledge base guarantees its use in most NLP 
tasks, consolidating thus the concept of resource reuse. 

In FunGramKB, the meaning postulate is conceived 
as a property of basic concepts and terminals. Root basic 
concepts are an exceptional case, because they are treated 
as semantic primitives. Current lexicalist models agree to 
handle lexical meaning as a cognitive representation 
reflecting the speakers’ shared knowledge about the 
referent linked to a given linguistic expression. Therefore, 
when representing one of the meanings of a lexical unit, 

we are really representing the meaning of a concept. This 
is the reason why meaning postulates are processed as a 
conceptual property in FunGramKB. 
 
3.2: Formal grammar of meaning postulates 
 
 In FunGramKB, a meaning postulate is a set of one or 
more logically connected predications, which are cognitive 
constructs carrying the generic features of the concept. In 
this section we describe the formal grammar which allows 
the machine to recognize well-formed predications for a 
meaning postulate. To illustrate, some predications in the 
meaning postulate of concept +BIRD are presented: 
 
[a] +(e1: +BE (1 x1: +BIRD)Theme (1 x2: 

+VERTEBRATE)Referent)  
[b] *(e2: HAVE (1 x1)Theme (1 x3: +FEATHER)Referent (2 x3: 

+LEG)Referent (2 x3: +WING)Referent) 
[c] *(e3: +FLY (1 x1)Theme) 
 
 In other words: 
 
[a] Birds are always vertebrates. 
[b] A typical bird has feathers, two legs and two wings. 
[c] A typical bird flies. 
 
 Our analysis starts with the syntactico-semantic 
description of participants, i.e. the smallest conceptual 
representation structures within predications. Just like in 
Dik’s Functional Grammar, there are two types of 
participants: arguments and satellites. In both cases, their 
syntactic representation is as follows: 
 

Λ ≡ (∑ α Π :  ∑ Ξ )ω
i = 0

1

j = 0

n
 
 
 
  α = [1 | 2 | 3 | 4 ... m | s | p | i] 
  Π = [x | f] 

ω = [Agent | Theme | Referent | Location | Origin 
| Goal | Beneficiary | Attribute | Means | 
Company | Instrument | Role | Route | 
Comparison | Manner | Scene | Reason | Distance 
| Time | Time_from | Time_to | Duration | 
Frequency | Purpose | Result | Coocurrence | 
Sequence | Condition | Speed | Location_in | 
Location_out] 

 
That is, Λ is a participant whose type is specified by 

Π, where indexed labels x and f are used by arguments and 
satellites respectively. A participant can be preceded by an 
operator (α), which applies a specific kind of 
quantification to the concept expressed as a selection 
preference (table 1): 
 

Feature Value 
absolute quantifier 1 | 2 | 3 | 4 ... 
relative quantifier m | s | p 

indefinite quantifier i 
 

Table 1. Participant operators. 



 
 If a quantification operator is incorporated, this will 
be as restricted as possible. In other words, if we refer to 
one entity, then operator 1 will always be used. Some 
alternatives arise when the selection preference is 
associated to more than one referent. In these cases, our 
decision is based on the parameters established by table 1. 
That is, if the exact number of entities is known, then an 
absolute quantifier is used; otherwise, we try to state if 
there are many (m), some (s) or just a few (p) referents. 
Finally, if none of these criteria can be applied, then 
operator i is chosen by default, which is read as ‘it refers to 
more than one entity, but we don’t know how many’. 
 These quantification operators are not obligatory, 
because there are some cases where it is impossible to 
apply one particular operator, e.g. when the concept to be 
quantified refers to an uncountable entity (e.g. air), or the 
selection preference is an attribute or a predication. 
 When selection preferences (Ξ) are stated, a colon (:) 
is used to separate them from their type of participant (Π), 
that is, argument or satellite. Selection preferences in a 
participant can be expressed by means of a predication, or 
one or more basic concepts from the entity or attribute 
subhierarchies in the ontology. Multiple selection 
preferences within a participant are linked by no logical 
connector, because they are handled as items of a list. In 
this case, a comma is used as a separator for selection 
preferences. 
 Moreover, every participant performs one and only 
one semantic function (ω). Regarding the inventory of 
semantic functions in FungramKB, some are argument-
oriented (e.g. Agent, Theme, Referent), others are satellite-
oriented (e.g. Means, Company, Instrument, Role, Route, 
Comparison, Manner, Scene, Reason, Distance, Time, 
Time_from, Time_to, Duration, Frequency, Location_in, 
Location_out, Purpose, Result, Coocurrence, Sequence, 
Condition, Speed), and finally there are some functions 
which can be used indistinctively for both arguments and 
satellites (e.g. Location, Origin, Goal, Beneficiary, 
Attribute). 
 Dik’s Functional Grammar proposes using lexical 
units from the own language when describing meaning 
postulates, since meaning definition is an internal issue of 
the language. However, this strategy contributes to lexical 
ambiguity in representation due to the polysemic nature of 
the defining lexical units. In addition, describing the 
meaning of lexical units in terms of other lexical units 
leads to some linguistic dependency. Instead, FunGramKB 
uses concepts for the formal description of meaning 
postulates. 
 On the other hand, the syntactic representation of a 
predication is as follows: 
 
 
 
  δ = [+ | *] 

β = [ing | pro | egr | rpast | npast | pres | nfut | rfut 
| cert | prob | pos | obl | adv | perm | n] 

 

 That is, a predication ∆ is stated by an indexed e, 
which is always followed by a colon and an event (Γ) from 
the basic coneptual level of the ontology. Between the 
colon and the event concept, it is possible to insert one or 
more operators, up to five. Each one of these operators 
conveys a different feature (table 2)1: 
 

Feature Value 
Aspectuality ing | pro | egr 
Temporality rpast | npast | 

pres | nfut | rfut 
Epistemic modality cert | prob | pos 

Non-epistemic 
modality 

obl | adv | perm 

Polarity n 
 

Table 2. Predication operators. 
 
 Aspectuality operators show the distinctions occuring 
in the development of an event, in terms of the start-
continuation-end of the event: e.g. ingressive (ing), 
progressive (pro) and egressive (egr). In other words, these 
operators show a temporal component which is relevant in 
the internal development of the state of affairs, instead of 
positioning the event in a time axis. 
 Temporality operators are used to position the state of 
affairs designated by the predication in some interval along 
the time axis: e.g. remote past (rpast), near past (npast), 
present (pres), near future (nfut) and remote future (rfut). 
 With regard to modality, two broad categories of 
operators are distinguished, i.e. epistemic and non-
epistemic, depending on if the speaker evaluates or not the 
truth of the predication. In FunGramKB, epistemic 
modality operators indicate the certainty (cert), probability 
(prob) or possibility (pos) that the information represented 
in the predication is true from the speaker’s point of view. 
On the other hand, non-epistemic modality operators 
reflect a strong deontic nature, stating the obligation (obl), 
advise (adv) or permission (perm) of the information in the 
predication. 
 Our polarity operator n is similar to predicate neg in 
d-Prolog [6], since negative information can be explicitly 
stated. Therefore, it is different from the built-in operator 
not in Prolog, which indicates negation by failure. 
 Finally, each predication taking part in a meaning 
postulate is preceded by a reasoning operator (δ) in order 
to state if the predication is strict (+) or defeasible (*). Our 
inference engine handles predications as rules, allowing 
monotonic reasoning with strict predications, and non-
monotonic with defeasible predications. Strict predications 
are law-like rules, which have no exceptions: e.g. whales 
are mammals, circles are round. On the other hand, 
defeasible predications, which make up our commonsense, 
can be withdrawn in the light of some more specific 
predication, which can be strict or defeasible. Thus, 
defeasible predications are rules which perform inference 
allowing contradictory information to override them: e.g. 

∆ ≡ δ (e: ∑ β Γ ∑ Λ)
k = 0

5

l = 0

n

                                                 
1  This table is not intended to provide an exhaustive list of 
predication operators. 



birds typically fly. Defeasible reasoning allows the 
possibility of working with incomplete information, so a 
closed-world assumption cannot be applied. 
 There are three logical connectors used in 
FunGramKB: conjunction (&), disjunction (|) and 
exclusion (^). Conjunction is the default logical 
connection, so it is also effective when two participants or 
predications are simply concatenated with no explicit 
connector. 
 The construction of meaning postulates in 
FunGramKB is semiautomatic, because human 
intervention is required, but the lexicographer’s intuition is 
guided and reviewed through our lexicographical tool, so 
that consistent well-formed predications can be stored 
(figure 2). 
 

Figure 2. Ontology editor in FunGramKB. 
 

When predications are built for a NLP knowledge 
base

.3: Computational implementation 

In this section, we describe the computational 
pl

                                                

 

 in order to represent an average adult speaker’s 
linguistic competence, dictionaries must be our guide [5]. 
Dictionaries are reliable repositories of information that 
several generations of expert speakers have judged to be 
relevant for lexical meaning. In that respect, FunGramKB 
works with several machine-readable dictionaries, Collins 
COBUILD English Dictionary [7], Oxford Advanced 
Learner’s Dictionary [2] and Longman Web Dictionary 
[4], and the linguistic taxonomy WordNet 1.6. Ide and 
Véronis [3] recommend using several dictionaries as 
sources of lexical acquisition, because what a particular 
dictionary lacks is usually supplied by another dictionary. 
 
3
 
 
im ementation of meaning postulates in FunGramKB. 
The first stage of this process was the formal definition of 
the theoretical model explained in section 3.2 by means of 
a context-free grammar, resulting in table 32. 
 

 
2  Strictly speaking, the grammar in this table is not well-formed, 
because symbol λ is not used within the start-symbol axiom. However, 
this decision was taken in the interests of a more expressive clarity. 

<S> 
<Se> 
<STRe> 
 
 
<LBCv> 
<OPe> 
 
<Lasp> 
 
 
<Ltem> 
 
 
<Lmode> 
 
<Lmodne> 
<OPasp> 
<OPtem> 
<OPmode> 
<OPmodne> 
<OPneg> 
<Lx> 
<X> 
 
 
<LSPx> 
<SFx> 
 
 
<LBCea> 
 
<Lf> 
<Sf> 
<STRf> 
 
<LSPf> 
<SFf> 
 
 
 
 
 
 
 
<N> 
<D> 
<CON> 
<OPr> 
<OPxf> 

::=
::=
::=

 
 

::=
::=

 
::=

 
 

::=
 
 

::=
 

::=
::=
::=
::=
::=

  ::=
::=
::=

 
 

  ::=
::=

 
 

::=
  
  ::=
::=
::=

 
::=
::=

 
 

 
 
 
 
 
::=
::=
::=
::=

  ::=

<S><CON><Se>|<Se> 
<Se><STRe>|<STRe> 
(<S>)|<OPr>(e<N>:<OPe><LBCv>
<Lx><Lf>)|<OPr>(e<N>:<OPe> 
<LBCv><Lx>) 
<List of basic concepts_event> 
<Lasp>|<Ltem>|<Lmode>| 
<Lmodne>|<OPneg> 
<OPasp><Ltem>|<OPasp><Lmode>
|<OPasp><Lmodne>|<OPasp> 
<OPneg>|<OPasp> 
<OPtem><Lmode>|<OPtem> 
<Lmodne>|<OPtem><OPneg>| 
<OPtem> 
<OPmode><Lmodne>|<OPmode> 
<OPneg>|<OPmode> 
<OPmodne><OPneg>|<OPmodne> 
ing|pro|egr 
rpast|npast|pres|nfut|rfut 
cert|prob|pos 
obl|adv|perm 
n 
<Lx><CON><X>|<X> 
(<OPxf> x<N><LSPx>)<SFx>| 
(<OPxf> x<N>)<SFx>|(<OPxf>) 
<SFx> 
:<LBCea>|:<S> 
Agent|Theme|Referent|Goal| 
Beneficiary|Attribute|Location| 
Origin 
<List of basic concepts_entity_ 
attribute> 
<Lf><CON><Sf>|<Sf> 
<Sf><FF>|<FF> 
(<Lf>)|(<OPxf> f<N>:<LSPf>) 
<SFf> 
<LBCea>|<S>|x<N> 
Beneficiary|Company|Instrument| 
Role|Origin|Route|Goal|Comparison|
Manner|Location|Scene|Reason| 
Distance|Time|Time_from|Time_to|
Duration|Frequency|Purpose|Result|
Coocurrence|Sequence|Condition| 
Attribute|Means|Speed|Location_in|
Location_out 
<N><D>|0|1|2|3|4|5|6|7|8|9 
0|1|2|3|4|5|6|7|8|9 
||^|&|λ 
+|*|λ 
<N>|m|s|p|i 

 
Table 3. Context-free grammar for meaning postulates. 
 

The second stage involved the election of a language 
for knowledge representation in FunGramKB. XML was 
chosen because it helps the system with the establishment 
of premises for structured data transfer, the autonomous 
separation of knowledge from its representation 
formalsism, and the atomization of the various components 
the meaning postulate is made up of, speeding up the 



inference process and the direct access to particular 
conceptual units in the meaning postulate. One of the first 
steps in this second stage was the conversion of the 
context-free grammar in table 3 into an XML schema, so 
that the application could recognize well-formed meaning 
postulates. To illustrate, figure 3 displays the XML 
representation of some predications in the meaning 
postulate of concept +SILVER_00: 
 
SILVER_00 
+(e1: +BE_00 (x1: +SILVER_00)Theme (x2: 
+METAL_00)Referent) 
*(e2: +BE_00 (x1)Theme (x3: +EXPENSIVE_00)Attribute) 
+(e5: +TRAVEL_00 (x4: +ELECTRICITY_00)Theme (f1: 
x1)Means) 
 
<S> 
 <e N="1" OPr="+"> 
  <LBCv>+BE_00</LBCv> 
  <x N="1" SFx="Theme"> 
   <LBCea>+SILVER_00</ LBCea > 
  </x> 
  <x N="2" SFx="Referent"> 
   <LBCea>+METAL_00</LBCea> 
  </x> 
 </e> 
 <e N="2" OPr="*"> 
  <LBCv>+BE_00</LBCv> 
  <x N="1" SFx="Theme"/> 
  <x N="3" SFx="Attribute"> 
   <LBCea>+EXPENSIVE_00</LBCea> 
  </x> 
 </e> 
 <e N="3" OPr="+"> 
  <LBCv>+TRAVEL_00</LBCv> 
  <x N="4" SFx="Theme"> 
   <LBCea>+ELECTRICITY_00</LBCea> 
  </x> 
  <f N="1" SFf="Means"> 
   <x>1</x> 
  </f> 
 </e> 
</S> 
 
Figure 3. Meaning postulate for +SILVER_00 in XML. 
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